期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Response of Phytoplankton Community Structure and Size- Fractionated Chlorophyll a in an Upwelling Simulation Experiment in the Western South China Sea
1
作者 CUI Dongyang WANG Jiangtao TAN Liju 《Journal of Ocean University of China》 SCIE CAS 2016年第5期835-840,共6页
The South China Sea(SCS), which is the largest marginal sea in the western tropical Pacific, plays an important role in regional climate change. However, the research on the phytoplankton community structure(PCS) resp... The South China Sea(SCS), which is the largest marginal sea in the western tropical Pacific, plays an important role in regional climate change. However, the research on the phytoplankton community structure(PCS) response to the upwelling remains inadequate. In January 2014, the upwelling simulation experiment was performed in the western SCS. Results indicate that the nutrient-rich bottom water not only increased the total Chlorophyll a(Chl a) concentrations, but would potentially altered the PCS. Due to new nutrients added, microphytoplankton had more sensitivity response to nutrient uptake than other phytoplankton groups. The variation of nutrients induced by formation, weakening and disappearance of upwelling resulted in phytoplankton species succession from cyanophyta to bacillariophyta. It may be the leading factor of the changes in PCS and size-fractionated Chl a. The initial concentration of DIP less than 0.1 μmol L-1 could not sustain the phytoplankton growth. This indicates that phosphorus may be the limiting factor in the western SCS. 展开更多
关键词 upwelling simulation experiment phytoplankton community structure size-fractionated Chl a nutrient limitation western South China Sea
下载PDF
Upwelling and anthropogenic forcing on phytoplankton productivity and community structure changes in the Zhejiang coastal area over the last 100 years 被引量:5
2
作者 DUAN Shanshan XING Lei +3 位作者 ZHANG Hailong FENG Xuwen YANG Haili ZHAO Meixun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第10期1-9,共9页
Phytoplankton productivity and community structure in marginal seas have been altered significantly during the past three decades, but it is still a challenge to distinguish the forcing mechanisms between climate chan... Phytoplankton productivity and community structure in marginal seas have been altered significantly during the past three decades, but it is still a challenge to distinguish the forcing mechanisms between climate change and anthropogenic activities. High time-resolution biomarker records of two 210Pb-dated sediment cores(#34: 28.5°N, 122.272°E; CJ12-1269: 28.861 9°N, 122.515 3°E) from the Min-Zhe coastal mud area were compared to reveal changes of phytoplankton productivity and community structure over the past 100 years. Phytoplankton productivity started to increase gradually from the 1970 s and increased rapidly after the late 1990 s at Site #34; and it started to increase gradually from the middle 1960 s and increased rapidly after the late 1980 s at Site CJ12-1269. Productivity of Core CJ12-1269 was higher than that of Core #34. Phytoplankton community structure variations displayed opposite patterns in the two cores. The decreasing D/B(dinosterol/brassicasterol) ratio of Core #34 since the 1960 s revealed increased diatom contribution to total productivity. In contrast, the increasing D/B ratio of Core CJ12-1269 since the 1950 s indicated increased dinoflagellate contribution to total productivity. Both the productivity increase and the increased dinoflagellate contribution in Core CJ12-1269 since the 1950–1960s were mainly caused by anthropogenic activities, as the location was closer to the Changjiang River Estuary with higher nutrient concentration and decreasing Si/N ratios. However, increased diatom contribution in Core #34 is proposed to be caused by increased coastal upwelling, with higher nutrient concentration and higher Si/N ratios. 展开更多
关键词 biomarkers phytoplankton community structure Min-Zhe coastal mud area Changjiang Diluted Water upwelling
下载PDF
Community structure and spatial-temporal variation of netzphytoplankton in the Bering Sea in summer
3
作者 WANG Yu XIANG Peng +4 位作者 YE Youyin LIN Gengming YANG Qingliang LIN Heshan LIN Mao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第4期99-107,共9页
Marine biodiversity is changing in response to altered physical environment, subsequent ecological changes as well as anthropogenic disturbances. In this study, phytoplankton samples in situ collected in the Bering Se... Marine biodiversity is changing in response to altered physical environment, subsequent ecological changes as well as anthropogenic disturbances. In this study, phytoplankton samples in situ collected in the Bering Sea in July of 1999 and 2010 were analyzed to obtain phytoplankton community structure and spatial-temporal variation between the beginning and end of this decade, and the correlation of phytoplankton community dynamics and environmental factors was investigated. A total of 5 divisions, 58 genera and 153 species of phytoplankton belonging to 3 ecological groups were identified. The vast majority of phytoplankton consisted of diatoms accounting for 66.7% of the total species and 95.2% of the total abundance. Considering differentiation in spatial extent and phytoplankton sample types, there were subtle changes in species composition, large altering in abundance and significant variation in spatial distribution between two surveys. The abundance peak area was located at the Bering Strait while sub peak was found at the Bering Sea Basin. The boreal-temperate diatom was the dominant flora, which was subsequently replaced by eurythermal and frigid-water diatom. Phytoplankton community in the Bering Sea was not a simplex uniform community but composed of deep-ocean assemblage and neritic assemblage. The deep-ocean assemblage was located in the northwestern Pacific Ocean and Bering Sea Basin, dominated by boreal-temperate species(Neodenticula seminae, Thalassiothrix longissima, Amphiprora hyperborean, Chaetoceros atlanticus, Thalassiosira trifulta, etc.) and eurychoric species(Thalassionema nitzschioides, Ch. compressus, Rhizosolenia styliformis, etc.), and characterized by low abundance, even interspecies abundance allocations, diverse dominant species and high species diversity. The neritic assemblage was distributed on the continental shelf and slope of Bering Sea and was mainly composed of frigid-water species(Th.nordenski?ldii, Ch. furcellatus, Ch. socialis, Bacteriosira fragilis, etc.) and eurythermal and euryhaline species(L.danicus, Ch. curvisetus, Coscinodiscus curvatulus, etc.), and it was characterized by high abundance, uneven interspecies allocations, prominent dominant species and low species diversity. Spatial-temporal variation of species composition and abundance of phytoplankton in the Bering Sea was directly controlled by surface circulation,nutrient supply and ice edge. 展开更多
关键词 Bering Sea phytoplankton community structure spatial and temporal variation distribution environment changes
下载PDF
Phytoplankton composition and its ecological effect in subsurface cold pool of the northern Bering Sea in summer as revealed by HPLC derived pigment signatures 被引量:7
4
作者 ZHUANG Yanpei JIN Haiyan +6 位作者 LI Hongliang CHEN Jianfang WANG Bin CHEN Fajin BAI Youcheng LU Yong TIAN Shichao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第6期103-111,共9页
CHEMTAX analysis of high-performance liquid chromatography (HPLC) pigment was conducted to study phytoplankton community structure in the northern Bering Sea shelf, where a seasonal subsurface cold pool emerges. The... CHEMTAX analysis of high-performance liquid chromatography (HPLC) pigment was conducted to study phytoplankton community structure in the northern Bering Sea shelf, where a seasonal subsurface cold pool emerges. The results showed that fucoxanthin (Fuco) and chlorophyll a (Chl a) were the most abundant diagnostic pigments, with the integrated water column values ranging from 141 to 2160 μg/m2 and 477 to 5 535 μg/m2, respectively. Moreover, a diatom bloom was identified at Sta. BB06 with the standing stock of Fuco up to 9214 μg/m3. The results of CHEMTAX suggested that the phytoplankton community in the northern Bering Sea shelf was dominated by diatoms and chrysophytes with an average relative contribu- tion to Chl a of 80% and 12%, respectively, followed by chlorophytes, dinoflagellates, and cryptophytes. Dia- toms were the absolutely dominant algae in the subsurface cold pool with a relative contribution exceeding 90%, while the contribution of chrysophytes was generally higher in oligotrophic upper water. Additionally, the presence of a cold pool would tend to favor accumulation of diatom biomass and a bloom that occurred beneath the halocline would be beneficial to organic matter sinks, which suggests that a large part of the phytoplankton biomass would settle to the seabed and support a rich benthic biomass. 展开更多
关键词 PIGMENT phytoplankton community structure CHEMTAX northern Bering Sea shelf subsurface cold pool
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部