Cereal straw is one of the most abundant biomass burned in China but its contribution to fine particulates is not adequately understood. In this study, three main kinds of cereal straws were collected from five grain ...Cereal straw is one of the most abundant biomass burned in China but its contribution to fine particulates is not adequately understood. In this study, three main kinds of cereal straws were collected from five grain producing areas in China. Fine particulate matters (PMzs) from the cereal straws subjected to control burnings, both under smoldering and flaming status, were sampled by using a custom made dilution chamber and sampling system in the laboratory. Element carbon (EC) and organic carbon (OC) was analyzed. 141 compounds of organic matters were measured by gas chromatography-mass spectrum (GC-MS). Source profiles of particulate organic matters emitted from cereal straw burnings were obtained. The results indicated that organic matters contribute a large fraction in fine particulate matters. Levoglucosan had the highest contributions with averagely 4.5% in mass of fine particulates and can be considered as the tracer of biomass burnings. Methyloxylated phenols from lignin degradation also had high concentrations in PM2.5, and contained approximately equal amounts of guaiacyl and syringyl compounds. 13-Sitostrol also made up relatively a large fraction of PMz5 compared with the other sterols (0.18%-0.63% of the total fine particle mass). Normal alkanes, PAHs, fatty acids, as well as normal alkanols had relatively lower concentrations compared with the compounds mentioned above. Carbon preference index (CPI) of normal alkanes and alkanoic acids showed characteristics of biogenic fuel burnings. Burning status significantly influenced the formations of EC and PAHs. The differences between the emission profiles of straw and wood combustions were displayed by the fingerprint compounds, which may be used to identify the contributions between wood and straw burnings in source apportionment researches.展开更多
The stable isotopic composition(δ13C andδ15N)and carbon/nitrogen ratio(C/N)of particulate organic matter(POM)in the Chukchi and East Siberian shelves from July to September,2016 were measured to evaluate the spatial...The stable isotopic composition(δ13C andδ15N)and carbon/nitrogen ratio(C/N)of particulate organic matter(POM)in the Chukchi and East Siberian shelves from July to September,2016 were measured to evaluate the spatial variability and origin of POM.Theδ13CPOC values were in the range of−29.5‰to−17.5‰with an average of−25.9‰±2.0‰,and theδ15NPN values ranged from 3.9‰to 13.1‰with an average of 8.0‰±1.6‰.The C/N ratios in the East Siberian shelf were generally higher than those in the Chukchi shelf,while theδ13C andδ15N values were just the opposite.Abnormally low C/N ratios(<4),lowδ13CPOC(almost−28‰)and highδ15NPN(>10‰)values were observed in the Wrangel Island polynya,which was attributed to the early bloom of small phytoplankton.The contributions of terrestrial POM,bloom-produced POM and non-bloom marine POM were estimated using a three end-member mixing model.The spatial distribution of terrestrial POM showed a high fraction in the East Siberian shelf and decreased eastward,indicating the influence of Russian rivers.The distribution of non-bloom marine POM showed a high fraction in the Chukchi shelf with the highest fraction occurring in the Bering Strait and decreased westward,suggesting the stimulation of biological production by the Pacific inflow in the Chukchi shelf.The fractions of bloom-produced POM were highest in the winter polynya and gradually decreased toward the periphery.A negative relationship between the bloom-produced POM and the sea ice meltwater inventory was observed,indicating that the net sea ice loss promotes early bloom in the polynya.Given the high fraction of bloom-produced POM,the early bloom of phytoplankton in the polynyas may play an important role on marine production and POM export in the Arctic shelves.展开更多
Stable carbon and nitrogen isotopic composition of particulate organic matter (POM) were measured for samples collected from the Bering Sea in 2010 summer. Particulate organic carbon (POC) and particulate nitrogen...Stable carbon and nitrogen isotopic composition of particulate organic matter (POM) were measured for samples collected from the Bering Sea in 2010 summer. Particulate organic carbon (POC) and particulate nitrogen (PN) showed high concentrations in the shelf and slope regions and decreased with depth in the slope and basin, indicating that biological processes play an important role on POM distribution. The low C/N ratio and heavy isotopic composition of POM, compared to those from the Alaska River, suggested a predominant contribution of marine biogenic organic matter in the Bering Sea. The fact thatδ^13Candδ^15Ngenerally increased with depth in the Bering Sea basin demonstrated that organic components with light carbon or nitrogen were decomposed preferentially during their transport to deep water. However, the highδ^13Candδ^15Nobserved in shelf bottom water were mostly resulted from sediment resuspension.展开更多
The degradability of particulate organic matter(POM)in the Gironde Estuary(France)was measuredusing the incubation technique.The influence of sample treatment and incubation conditions on the re-sults was evaluated.A ...The degradability of particulate organic matter(POM)in the Gironde Estuary(France)was measuredusing the incubation technique.The influence of sample treatment and incubation conditions on the re-sults was evaluated.A mathematical model was successfully used to describe the various degradationcurves.Results showed that the upstream POM had very high degradability;the central estuaryPOM had low degradability;and that the mouth POM degradability was between that of central POM(low degradability)and marine POM(high degradability).展开更多
The transport and deposition of particulate organic matter (POM) in river streams has recently received much attention as one of important ecological processes in rivers. We focused on interacted behaviors of sand par...The transport and deposition of particulate organic matter (POM) in river streams has recently received much attention as one of important ecological processes in rivers. We focused on interacted behaviors of sand particles in bed load and POM in vegetated area on sand bars. The purpose of this study is to clarify the characteristics of deposition of POM with bed load on sandbars with the riparian vegetation. A basic experiment on POM transport and deposition with vegetation is conducted in a laboratory flume. It demonstrates that several issues still remain to be future investigated. In particular, the shear due to the bed roughness in the vegetated area and the transport and deposition process of sand particles and POM are required to be described by the proper modeling which will be introduced into a simulation model of various fluvial processes. The main results of this study are that ripples are formed by bed load in riparian vegetation and POM deposition is promoted by ripple behavior. Based on these results, the POM deposition with ripples in vegetated area is described by a conceptual model which will affect various aspects in ecosystem management based on fluvial processes.展开更多
The effects of using different types of glass fiber filters (GF/F, GF/C) and of sample treatments were evaluated. Studies on the variation of suspended matter (SM) and particulate organic carbon (POC) showed that:1) t...The effects of using different types of glass fiber filters (GF/F, GF/C) and of sample treatments were evaluated. Studies on the variation of suspended matter (SM) and particulate organic carbon (POC) showed that:1) the transversal and day to night variations are important and must be taken into account in order to get a correct river flux; 2) no regular seasonal variations of SM and POC were observed, as they are controlled essentially by the climatological, hydrologic, physiochernical, biological, and geological conditions of the drainage area.展开更多
In order to understand origin and fate of particulate organic matter,the isotopic composition(δ^(13)C andδ^(15)N),total or-ganic carbon content,total nitrogen content,and C/N ratios were measured for suspended parti...In order to understand origin and fate of particulate organic matter,the isotopic composition(δ^(13)C andδ^(15)N),total or-ganic carbon content,total nitrogen content,and C/N ratios were measured for suspended particulate organic matter(POM)collected from the northern South China Sea(NSCS)during summer.Our study revealed thatδ^(13)C generally decreased from land to sea,and elevatedδ^(13)C occurred at the nearshore stations,suggesting that POC was mainly contributed from the eutrophic level and microbial activity.Moreover,the distribution ofδ^(15)N values were complicated,and heterotrophic modification was responsible for higherδ^(15)N in the nearshore stations.These distribution patterns ofδ^(13)C andδ^(15)N in the nearshore stations may be associated with the intensifi-cation of human activity in the coast.Based on the Stable Isotope Analysis in R model,65%of POM was contributed by marine or-ganic matter in the NSCS,20%by terrestrial inputs,and 15%by freshwater algae.展开更多
Transitional ecosystems,estuaries and the coastal seas,are distinctively affected by natural and anthropogenic factors.Organic matter(OM)originating from terrestrial sources is exported by rivers and forms a key compo...Transitional ecosystems,estuaries and the coastal seas,are distinctively affected by natural and anthropogenic factors.Organic matter(OM)originating from terrestrial sources is exported by rivers and forms a key component of the global biogeochemical cycles.Most previous studies focused on the bulk biochemical and anthropogenic aspects affecting these ecosystems.In the present study,we examined the sources and fate of OM entrained within suspended particulate matter(SPM)of the Zuari River and its estuary,west coast of India.Besides using amino acid(AA)enantiomers(L-and D-forms)as biomarkers,other bulk biochemical parameters viz.particulate organic carbon(POC),δ13C,particulate nitrogen(PN),δ15N and chlorophyll a were analyzed.Surprisingly no significant temporal variations were observed in the parameters analyzed;nonetheless,salinity,POC,δ13C,PN,δ15N,glutamic acid,serine,alanine,tyrosine,leucine and D-aspartic acid exhibited significant spatial variability suggesting source differentiation.The POC content displayed weak temporal variability with low values observed during the post-monsoon season attributed to inputs from mixed sources.Estuarine samples were less depleted than the riverine samples suggesting contributions from marine plankton in addition to contributions from river plankton and terrestrial C3 plants detritus.Labile OM was observed during the monsoon and post-monsoon seasons in the estuarine region.More degraded OM was noticed during the pre-monsoon season.Principal component analysis was used to ascertain the sources and factors influencing OM.Principally five factors were extracted explaining 84.52%of the total variance.The first component accounted for 27.10%of the variance suggesting the dominance of tidal influence whereas,the second component accounted for heterotrophic bacteria and their remnants associated with the particulate matter,contributing primarily to the AA pool.Based on this study we ascertained the role of the estuarine turbidity maximum(ETM)controlling the sources of POM and its implications to small tropical rivers.Thus,changes in temporal and regional settings are more likely to affect the natural biogeochemical cycles of small tropical rivers.展开更多
Agricultural sustainability relates directly to maintaining or enhancing soil quality. Soil quality studies in Canada during the 1980 s showed that loss of soil organic matter (SOM) and soil aggregate stability was st...Agricultural sustainability relates directly to maintaining or enhancing soil quality. Soil quality studies in Canada during the 1980 s showed that loss of soil organic matter (SOM) and soil aggregate stability was standard features of non-sustainable land management in agroecosystems. In this study total soil organic carbon (SOC), particulate organic matter (POM), POM-C as a percentage of total SOC, and aggregate stability were determined for three cultivated fields and three adjacent grassland fields to a…展开更多
Bioavailability of heavy metals in soil organic matter depends on itscomponents. Characterization of heavy metal distributions in different fractions of soil organicmatter is needed for better understanding of the fat...Bioavailability of heavy metals in soil organic matter depends on itscomponents. Characterization of heavy metal distributions in different fractions of soil organicmatter is needed for better understanding of the fate of heavy metals. This study investigated theaccumulation and partitioning of copper and zinc among different size particulate organic matter(POM) fractions in polluted soils from a former iron ore processing site in western Shaoxing County,Zhejiang Province. Physical fractionations were carried out to separate soil primary particlesaccording to their size and density. Copper and Zn had a heterogeneous distribution among soilparticle fractions. Copper and Zn were significantly (p < 0.05) enriched in the POM fractions. >0.05 mm POM and < 0.05 mm fine soil fractions were mainly responsible for Cu and Zn retention insoils. The POM fraction contained up to 1 322 mg Cu kg^(-1) and 1115 mg Zn kg^(-1) and the fine soilfraction contained up to 422 mg Cu kg^(-1) and 537 mg Zn kg^(-1). The total POM fraction wasresponsible for 15.8%-41.2% and 12.2%-31.7% of the total amount of Cu and Zn, respectively, in thepolluted soils. The percentages of Cu and Zn associated with organic matter in < 0.05 mm fine soilfractions for the polluted soils ranged from 14.1% to 24.5%, and 5.4% to 15.8%, respectively.Accumulation of soil organic matter could increase enrichment of Cu (or Zn) in the POM fractions.Also, Cu provided a greater enrichment in the POM fractions than Zn.展开更多
Abstract: Physical, chemical and biological soil properties in surface (0-5 cm) and subsurface soil (5-15 cm) were determined in a field experiment conducted with seven treatments consisted of different combinati...Abstract: Physical, chemical and biological soil properties in surface (0-5 cm) and subsurface soil (5-15 cm) were determined in a field experiment conducted with seven treatments consisted of different combinations of fertilizer N (0, 100 and 200 kg N ha^-1), P (0, 22 and 44 kg P2O5 ha^-1) and K (0, 41 and 82 kg K2O ha^-1) applied both to summer-grown maize (Zea mays L.) and winter-grown wheat (Triticum aestivum L.) crops continuously for 37 years under irrigated subtropical conditions. Application of N, P and K significantly increased water stable aggregates and had profound effects in increasing the mean weight diameter as well as the formation of macro-aggregates, which were highest in both surface (81%) and subsurface (74%) soil layers with application of 100 kg N + 22 kg P2O5 + 41 kg K2O ha^-1 (N100P22K41). The N100P22K41 treatment also enhanced total organic C (TOC) from 4.4 g kg^-1 in no-NPK control to 4.8 g kg^-1in surface layer and from 3.3 to 4.1 g kg1 in subsurface layer leading to the 20% higher TOC stocks in 0-15 cm soil. The labile C and N fractions such as water soluble C, particulate and light fraction organic matter, potentially mineralizable N and microbial biomass were also highest under the optimized balanced application of N100P22K41. Relatively higher increase in all labile fractions of C and N as proportion of TOC and total N, respectively suggested that these are potential indicators to reflect changes in management practices long before changes in TOC and TN are detectable. These results demonstrated that optimized balanced application of N, P and K is crucial for improving soil health ensuring long-term sustainability of farming systems in semiarid subtropical soils.展开更多
Organic matter(OM) is preserved as different occurrences in mudstones, which can affect the hydrocarbon generation process. However, little research has focused on hydrocarbon generation as a function of different occ...Organic matter(OM) is preserved as different occurrences in mudstones, which can affect the hydrocarbon generation process. However, little research has focused on hydrocarbon generation as a function of different occurrences of OM. This study collected a suite of mudstones in the Dongying Sag, Bohai Bay Basin, and conducted Rock-Eval Ⅵ pyrolysis after Soxhlet extraction and Na_(2)S_(2)O_(8) oxidation, aiming to quantify the OM with different occurrences and figure out the contributions of each occurrence of OM to the hydrocarbon generation. There are three types of occurrences of OM: soluble organic matter(SOM),mineral-bound organic matter(MOM), and particulate organic matter(POM). MOM is the most abundant among the three occurrence types of OM. SOM and MOM are the main hydrocarbon precursors, and their hydrocarbon contributions alternate with different kerogen types and layers. Additionally, MOMcontributed hydrocarbons are numerous at shallow depths;SOM-contributed hydrocarbons mainly occur at deep depths;and POM-contributed hydrocarbons change little with depth. These results demonstrate that MOM should be the main hydrocarbon precursor in shallow formations and that SOM is the main hydrocarbon contributor at deep depths.展开更多
Increasing evidence has shown that conservation tillage is an effective agricultural practice to increase carbon (C) sequestration in soils. In order to understand the mechanisms underlying the responses of soil org...Increasing evidence has shown that conservation tillage is an effective agricultural practice to increase carbon (C) sequestration in soils. In order to understand the mechanisms underlying the responses of soil organic carbon (SOC) to tillage regimes, physical fractionation techniques were employed to evaluate the effect of long-term no-tillage (NT) on soil aggregation and SOC fractions. Results showed that NT increased the concentration of total SOC by 18.1% compared with conventional tillage (CT) under a long-term maize (Zea mays L.) cropping system in Northeast China. The proportion of soil large macroaggregates (〉 2 000 μm) was higher in NT than that in CT, while small macroaggregates (250-2 000μm) showed an opposite trend. Therefore, the total proportion of macroaggregates (〉 2 000 and 250-2 000μm) was not affected by tillage management. However, C concentrations of macroaggregates on a whole soil basis were higher under NT relative to CT, indicating that both the amount of aggregation and aggregate turnover affected C stabilization. Carbon concentrations of intra-aggregate particulate organic matter associated with microaggregates (iPOM-m) and microaggregates occluded within macroaggregates (iPOM-mM) in NT were 1.6 and 1.8 times greater than those in CT, respectively. Carbon proportions of iPOM-n and iPOM-mM in the total SOC increased from 5.4% and 6.3% in CT to 7.2% and 9.7% in NT, respectively. Furthermore, the difference in the microaggregate protected C (i. e., iPOM-m and iPOM-mM) between NT and CT could explain 45.4% of the difference in the whole SOC. The above results indicate that NT stimulates C accumulation within microaggregates which then are further acted upon in the soil to form macroaggregates. The shift of SOC within microaggregates is beneficial for long-term C sequestration in soil. We also corroborate that the microaggregate protected C is useful as a pool for assessing the impact of tillage management on SOC storage.展开更多
Studying contents and seasonal dynamics of active organic carbon in the soil is an important method for revealing the turnover and regulation mechanism of soil carbon pool. Through 3 years of field sampling and lab an...Studying contents and seasonal dynamics of active organic carbon in the soil is an important method for revealing the turnover and regulation mechanism of soil carbon pool. Through 3 years of field sampling and lab analysis, we studied the seasonal variations, content differences, and interrelationships of total organic carbon (TOC), light fraction organic carbon (LFOC), and particulate organic carbon (POC) of the soil in the forest areas burned with different fire intensities in the Daxing'anling Mountains. The mean TOC content in the low-intensity burned area was greater than that in the unburned area, moderate-intensity, and high-intensity burned areas in June and November (P 〈 0.05). LFOC and POC in the low-intensity burned area were greater than that in either moderate-intensity or high-intensity burned areas, with significant differences in LFOC in September and November (P 〈 0.05). A significant difference in LFOC between the unburned and burned areas was only found in July (P 〈 0.05). However, the differences in POC between the unburned and burned areas were not significant in all the whole seasons (P 〉 0.05). Soil LFOC and POC varied significantly with the seasons (P 〈 0.05) in the Daxing'anling Mountains. Significant linear relationships were observed between soil TOC, LFOC, and POC, which were positively correlated with soil nitrogen and negatively correlated with soil temperature in the Daxing'anling Mountains.展开更多
Organic carbon, total nitrogen, amino acids, sugars, and chlorophyll were determined in < 1 mm fractions of the samples collected by successive large aperture time-series sediment traps (Honjo-Mark Ⅵ ) in northern...Organic carbon, total nitrogen, amino acids, sugars, and chlorophyll were determined in < 1 mm fractions of the samples collected by successive large aperture time-series sediment traps (Honjo-Mark Ⅵ ) in northern China China Sea during September 1987 to October1988. The ratio of C/N and the relative abundance of amino acids and sugars show that organicmatter in the settling particles from northem South China Sea is derived mainly from marineplantkon (especially phytoplankton). The organic carbon fluxes in our sediment traps are lowerthan those in other sediment traps. But the relative contents of Corg/total particulate matter aregenerally similar to those in the Panama Basin, Arabian Sea and Subarctic Pacific. It is suggested that monsoon-caused changes of physical and chemical conditions in the upper euphoticlayer would contro the fluxes of organic matter as well as its composition and transport innorthern South China Sea.展开更多
Sinking particulate material collected from Nansha Yongshu reef lagoon and the continental shelf of the East China Sea by sediment traps has been analyzed and studied for the first time using organic geochemical metho...Sinking particulate material collected from Nansha Yongshu reef lagoon and the continental shelf of the East China Sea by sediment traps has been analyzed and studied for the first time using organic geochemical method. The results show that about half of the sinking particulate organic matter in the two study areas are consumed before reaching the depth of 5 m to the sea floor and the degree of this consumption in Yongshu reef lagoon is larger than that in the continental shelf of the East China Sea. The distributions of hydrocarbons and fatty acids indicate that the minor difference of biological sources of sinking particulate organic matter exists between Yongshu reef lagoon and the continental shelf of the East China Sea, but they mainly come from marine plankton. Stronger biological and biochemical transformations of sinking particulate organic matter are also observed and the intensity of this transformation in Yongshu reef lagoon is greater than that in the continental shelf of the East China Sea. It is found that the occurrence of C 25 highly branched isoprenoid (HBI) diene may be related to the composition of diatom species.展开更多
To address the availability of carbon sources for denitrification,the accelerated hydrolysis of the most abundant but low-availability fraction of particulate organic matter(POM)was investigated.Mesh sieves with diffe...To address the availability of carbon sources for denitrification,the accelerated hydrolysis of the most abundant but low-availability fraction of particulate organic matter(POM)was investigated.Mesh sieves with different pore sizes were used as primary pretreatment at the start-up-stage of the biological process to separate some POM from the liquid system.The changes in soluble carbohydrates and proteins were monitored to investigate the hydrolysis performance of the sieved POM,with waste activated sludge(WAS)as the control test.The results showed that an average of 35%POM could be entrapped before filtrate mat development.In addition,benefiting from the high polysaccharides concentration,as well as the high availability due to the relatively loose physical structure,a 23%hydrolysis efficiency of POM was obtained,in contrast to that of WAS(3.4%),with a hydrolysis constant of 0.39 h^(−1).The prominent performance was also attributed to the unique microbial communities having been domesticated at a lower temperature,especially the cellulose-degrading bacteria Paraclostridium and psychrophile Psychrobacter,making up 6.94%and 2.56%,respectively.Furthermore,the potential benefits and application of improved POM hydrolysis by start-up stage recovery via mesh sieves combined with anaerobic fermentation were evaluated,including selective POM entrapment,alleviation of blockage and wear,and a reduction in aeration energy.By the proposed strategy,carbon availability for biological nutrient removal(BNR)processes is anticipated to be improved more economically than that can be achieved by primary clarifier elimination.展开更多
基金Project supported by the Hi-Tech Research and Development Program (863) of China (No. 2001AA641060 2003AA641040)the National Basic Research Program (973) of China (No. 2002CB410801).
文摘Cereal straw is one of the most abundant biomass burned in China but its contribution to fine particulates is not adequately understood. In this study, three main kinds of cereal straws were collected from five grain producing areas in China. Fine particulate matters (PMzs) from the cereal straws subjected to control burnings, both under smoldering and flaming status, were sampled by using a custom made dilution chamber and sampling system in the laboratory. Element carbon (EC) and organic carbon (OC) was analyzed. 141 compounds of organic matters were measured by gas chromatography-mass spectrum (GC-MS). Source profiles of particulate organic matters emitted from cereal straw burnings were obtained. The results indicated that organic matters contribute a large fraction in fine particulate matters. Levoglucosan had the highest contributions with averagely 4.5% in mass of fine particulates and can be considered as the tracer of biomass burnings. Methyloxylated phenols from lignin degradation also had high concentrations in PM2.5, and contained approximately equal amounts of guaiacyl and syringyl compounds. 13-Sitostrol also made up relatively a large fraction of PMz5 compared with the other sterols (0.18%-0.63% of the total fine particle mass). Normal alkanes, PAHs, fatty acids, as well as normal alkanols had relatively lower concentrations compared with the compounds mentioned above. Carbon preference index (CPI) of normal alkanes and alkanoic acids showed characteristics of biogenic fuel burnings. Burning status significantly influenced the formations of EC and PAHs. The differences between the emission profiles of straw and wood combustions were displayed by the fingerprint compounds, which may be used to identify the contributions between wood and straw burnings in source apportionment researches.
基金The National Natural Science Foundation of China under contract No.41721005the China Ocean Mineral Resources R&D Association(COMRA)Program under contract No.DY135-E2-2-03+1 种基金the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology under contract No.2018SDKJ0104-3the Ministry of Science and Education of Russia Project under contract No.АААА-А17-117030110033-0.
文摘The stable isotopic composition(δ13C andδ15N)and carbon/nitrogen ratio(C/N)of particulate organic matter(POM)in the Chukchi and East Siberian shelves from July to September,2016 were measured to evaluate the spatial variability and origin of POM.Theδ13CPOC values were in the range of−29.5‰to−17.5‰with an average of−25.9‰±2.0‰,and theδ15NPN values ranged from 3.9‰to 13.1‰with an average of 8.0‰±1.6‰.The C/N ratios in the East Siberian shelf were generally higher than those in the Chukchi shelf,while theδ13C andδ15N values were just the opposite.Abnormally low C/N ratios(<4),lowδ13CPOC(almost−28‰)and highδ15NPN(>10‰)values were observed in the Wrangel Island polynya,which was attributed to the early bloom of small phytoplankton.The contributions of terrestrial POM,bloom-produced POM and non-bloom marine POM were estimated using a three end-member mixing model.The spatial distribution of terrestrial POM showed a high fraction in the East Siberian shelf and decreased eastward,indicating the influence of Russian rivers.The distribution of non-bloom marine POM showed a high fraction in the Chukchi shelf with the highest fraction occurring in the Bering Strait and decreased westward,suggesting the stimulation of biological production by the Pacific inflow in the Chukchi shelf.The fractions of bloom-produced POM were highest in the winter polynya and gradually decreased toward the periphery.A negative relationship between the bloom-produced POM and the sea ice meltwater inventory was observed,indicating that the net sea ice loss promotes early bloom in the polynya.Given the high fraction of bloom-produced POM,the early bloom of phytoplankton in the polynyas may play an important role on marine production and POM export in the Arctic shelves.
基金The Chinese Polar Environment Comprehensive Investigation and Assessment Programs under contract Nos CHIN-ARE2014-03-04-03 and CHINARE2014-04-03-05the National Natural Science Foundation of China under contract No.41125020+1 种基金the 5th Chinese Arctic Research Programthe Polar Science Strategic Research Foundation of China under contract No.20120307
文摘Stable carbon and nitrogen isotopic composition of particulate organic matter (POM) were measured for samples collected from the Bering Sea in 2010 summer. Particulate organic carbon (POC) and particulate nitrogen (PN) showed high concentrations in the shelf and slope regions and decreased with depth in the slope and basin, indicating that biological processes play an important role on POM distribution. The low C/N ratio and heavy isotopic composition of POM, compared to those from the Alaska River, suggested a predominant contribution of marine biogenic organic matter in the Bering Sea. The fact thatδ^13Candδ^15Ngenerally increased with depth in the Bering Sea basin demonstrated that organic components with light carbon or nitrogen were decomposed preferentially during their transport to deep water. However, the highδ^13Candδ^15Nobserved in shelf bottom water were mostly resulted from sediment resuspension.
基金Contribution No.2247 from the lnstitute of Oceanology,Chinese Academy of Sciences.
文摘The degradability of particulate organic matter(POM)in the Gironde Estuary(France)was measuredusing the incubation technique.The influence of sample treatment and incubation conditions on the re-sults was evaluated.A mathematical model was successfully used to describe the various degradationcurves.Results showed that the upstream POM had very high degradability;the central estuaryPOM had low degradability;and that the mouth POM degradability was between that of central POM(low degradability)and marine POM(high degradability).
文摘The transport and deposition of particulate organic matter (POM) in river streams has recently received much attention as one of important ecological processes in rivers. We focused on interacted behaviors of sand particles in bed load and POM in vegetated area on sand bars. The purpose of this study is to clarify the characteristics of deposition of POM with bed load on sandbars with the riparian vegetation. A basic experiment on POM transport and deposition with vegetation is conducted in a laboratory flume. It demonstrates that several issues still remain to be future investigated. In particular, the shear due to the bed roughness in the vegetated area and the transport and deposition process of sand particles and POM are required to be described by the proper modeling which will be introduced into a simulation model of various fluvial processes. The main results of this study are that ripples are formed by bed load in riparian vegetation and POM deposition is promoted by ripple behavior. Based on these results, the POM deposition with ripples in vegetated area is described by a conceptual model which will affect various aspects in ecosystem management based on fluvial processes.
基金Contribution No 2246 from the Institute of Oceanology, Chinese. Academy of Science
文摘The effects of using different types of glass fiber filters (GF/F, GF/C) and of sample treatments were evaluated. Studies on the variation of suspended matter (SM) and particulate organic carbon (POC) showed that:1) the transversal and day to night variations are important and must be taken into account in order to get a correct river flux; 2) no regular seasonal variations of SM and POC were observed, as they are controlled essentially by the climatological, hydrologic, physiochernical, biological, and geological conditions of the drainage area.
基金This work was supported by the National Natural Science Foundation of China(Nos.U1901213,41466010,41676008)the China National Key Research and Development Plan Project(No.2016YFC1401403)+3 种基金the Guangdong Natural Science Foundation of China(Nos.2016 A0303120042020A1515010500)the Project of Enhancing School with Innovation of Guangdong Ocean University(Nos.GDOU2016050260,230419097)the Marine Science Research Team Project of Guangdong Ocean University(No.002026002004).
文摘In order to understand origin and fate of particulate organic matter,the isotopic composition(δ^(13)C andδ^(15)N),total or-ganic carbon content,total nitrogen content,and C/N ratios were measured for suspended particulate organic matter(POM)collected from the northern South China Sea(NSCS)during summer.Our study revealed thatδ^(13)C generally decreased from land to sea,and elevatedδ^(13)C occurred at the nearshore stations,suggesting that POC was mainly contributed from the eutrophic level and microbial activity.Moreover,the distribution ofδ^(15)N values were complicated,and heterotrophic modification was responsible for higherδ^(15)N in the nearshore stations.These distribution patterns ofδ^(13)C andδ^(15)N in the nearshore stations may be associated with the intensifi-cation of human activity in the coast.Based on the Stable Isotope Analysis in R model,65%of POM was contributed by marine or-ganic matter in the NSCS,20%by terrestrial inputs,and 15%by freshwater algae.
基金The National Natural Science Foundation of China under contract No.41530960
文摘Transitional ecosystems,estuaries and the coastal seas,are distinctively affected by natural and anthropogenic factors.Organic matter(OM)originating from terrestrial sources is exported by rivers and forms a key component of the global biogeochemical cycles.Most previous studies focused on the bulk biochemical and anthropogenic aspects affecting these ecosystems.In the present study,we examined the sources and fate of OM entrained within suspended particulate matter(SPM)of the Zuari River and its estuary,west coast of India.Besides using amino acid(AA)enantiomers(L-and D-forms)as biomarkers,other bulk biochemical parameters viz.particulate organic carbon(POC),δ13C,particulate nitrogen(PN),δ15N and chlorophyll a were analyzed.Surprisingly no significant temporal variations were observed in the parameters analyzed;nonetheless,salinity,POC,δ13C,PN,δ15N,glutamic acid,serine,alanine,tyrosine,leucine and D-aspartic acid exhibited significant spatial variability suggesting source differentiation.The POC content displayed weak temporal variability with low values observed during the post-monsoon season attributed to inputs from mixed sources.Estuarine samples were less depleted than the riverine samples suggesting contributions from marine plankton in addition to contributions from river plankton and terrestrial C3 plants detritus.Labile OM was observed during the monsoon and post-monsoon seasons in the estuarine region.More degraded OM was noticed during the pre-monsoon season.Principal component analysis was used to ascertain the sources and factors influencing OM.Principally five factors were extracted explaining 84.52%of the total variance.The first component accounted for 27.10%of the variance suggesting the dominance of tidal influence whereas,the second component accounted for heterotrophic bacteria and their remnants associated with the particulate matter,contributing primarily to the AA pool.Based on this study we ascertained the role of the estuarine turbidity maximum(ETM)controlling the sources of POM and its implications to small tropical rivers.Thus,changes in temporal and regional settings are more likely to affect the natural biogeochemical cycles of small tropical rivers.
基金Project supported by the USDA-NRCS National Employee Development Center, USA the Chinese Academy of Sciences for the Hundred Talents Program, and the Federal Hatch Program, USA (No.MAS00860)
文摘Agricultural sustainability relates directly to maintaining or enhancing soil quality. Soil quality studies in Canada during the 1980 s showed that loss of soil organic matter (SOM) and soil aggregate stability was standard features of non-sustainable land management in agroecosystems. In this study total soil organic carbon (SOC), particulate organic matter (POM), POM-C as a percentage of total SOC, and aggregate stability were determined for three cultivated fields and three adjacent grassland fields to a…
基金Project supported by the Natural Science Foundation of Zhejiang Province (No. M403038).
文摘Bioavailability of heavy metals in soil organic matter depends on itscomponents. Characterization of heavy metal distributions in different fractions of soil organicmatter is needed for better understanding of the fate of heavy metals. This study investigated theaccumulation and partitioning of copper and zinc among different size particulate organic matter(POM) fractions in polluted soils from a former iron ore processing site in western Shaoxing County,Zhejiang Province. Physical fractionations were carried out to separate soil primary particlesaccording to their size and density. Copper and Zn had a heterogeneous distribution among soilparticle fractions. Copper and Zn were significantly (p < 0.05) enriched in the POM fractions. >0.05 mm POM and < 0.05 mm fine soil fractions were mainly responsible for Cu and Zn retention insoils. The POM fraction contained up to 1 322 mg Cu kg^(-1) and 1115 mg Zn kg^(-1) and the fine soilfraction contained up to 422 mg Cu kg^(-1) and 537 mg Zn kg^(-1). The total POM fraction wasresponsible for 15.8%-41.2% and 12.2%-31.7% of the total amount of Cu and Zn, respectively, in thepolluted soils. The percentages of Cu and Zn associated with organic matter in < 0.05 mm fine soilfractions for the polluted soils ranged from 14.1% to 24.5%, and 5.4% to 15.8%, respectively.Accumulation of soil organic matter could increase enrichment of Cu (or Zn) in the POM fractions.Also, Cu provided a greater enrichment in the POM fractions than Zn.
文摘Abstract: Physical, chemical and biological soil properties in surface (0-5 cm) and subsurface soil (5-15 cm) were determined in a field experiment conducted with seven treatments consisted of different combinations of fertilizer N (0, 100 and 200 kg N ha^-1), P (0, 22 and 44 kg P2O5 ha^-1) and K (0, 41 and 82 kg K2O ha^-1) applied both to summer-grown maize (Zea mays L.) and winter-grown wheat (Triticum aestivum L.) crops continuously for 37 years under irrigated subtropical conditions. Application of N, P and K significantly increased water stable aggregates and had profound effects in increasing the mean weight diameter as well as the formation of macro-aggregates, which were highest in both surface (81%) and subsurface (74%) soil layers with application of 100 kg N + 22 kg P2O5 + 41 kg K2O ha^-1 (N100P22K41). The N100P22K41 treatment also enhanced total organic C (TOC) from 4.4 g kg^-1 in no-NPK control to 4.8 g kg^-1in surface layer and from 3.3 to 4.1 g kg1 in subsurface layer leading to the 20% higher TOC stocks in 0-15 cm soil. The labile C and N fractions such as water soluble C, particulate and light fraction organic matter, potentially mineralizable N and microbial biomass were also highest under the optimized balanced application of N100P22K41. Relatively higher increase in all labile fractions of C and N as proportion of TOC and total N, respectively suggested that these are potential indicators to reflect changes in management practices long before changes in TOC and TN are detectable. These results demonstrated that optimized balanced application of N, P and K is crucial for improving soil health ensuring long-term sustainability of farming systems in semiarid subtropical soils.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 41672115 and 41972126)the National Science and Technology Major Project of China(Grant No. 2016ZX05006001-003)。
文摘Organic matter(OM) is preserved as different occurrences in mudstones, which can affect the hydrocarbon generation process. However, little research has focused on hydrocarbon generation as a function of different occurrences of OM. This study collected a suite of mudstones in the Dongying Sag, Bohai Bay Basin, and conducted Rock-Eval Ⅵ pyrolysis after Soxhlet extraction and Na_(2)S_(2)O_(8) oxidation, aiming to quantify the OM with different occurrences and figure out the contributions of each occurrence of OM to the hydrocarbon generation. There are three types of occurrences of OM: soluble organic matter(SOM),mineral-bound organic matter(MOM), and particulate organic matter(POM). MOM is the most abundant among the three occurrence types of OM. SOM and MOM are the main hydrocarbon precursors, and their hydrocarbon contributions alternate with different kerogen types and layers. Additionally, MOMcontributed hydrocarbons are numerous at shallow depths;SOM-contributed hydrocarbons mainly occur at deep depths;and POM-contributed hydrocarbons change little with depth. These results demonstrate that MOM should be the main hydrocarbon precursor in shallow formations and that SOM is the main hydrocarbon contributor at deep depths.
基金Supported by the National Basic Research Program(973Program)of China(No.2009CB118601)the Foundation of the Chinese Academy of Agricultural Sciences(No.082060302-19)+2 种基金the National Natural Science Foundation of China(No.30571094)the Program for New Century Excellent Talents in University,China(No.NCET-05-0492)the Doctoral Foundation of the Ministry of Education,China(No.B200608)
文摘Increasing evidence has shown that conservation tillage is an effective agricultural practice to increase carbon (C) sequestration in soils. In order to understand the mechanisms underlying the responses of soil organic carbon (SOC) to tillage regimes, physical fractionation techniques were employed to evaluate the effect of long-term no-tillage (NT) on soil aggregation and SOC fractions. Results showed that NT increased the concentration of total SOC by 18.1% compared with conventional tillage (CT) under a long-term maize (Zea mays L.) cropping system in Northeast China. The proportion of soil large macroaggregates (〉 2 000 μm) was higher in NT than that in CT, while small macroaggregates (250-2 000μm) showed an opposite trend. Therefore, the total proportion of macroaggregates (〉 2 000 and 250-2 000μm) was not affected by tillage management. However, C concentrations of macroaggregates on a whole soil basis were higher under NT relative to CT, indicating that both the amount of aggregation and aggregate turnover affected C stabilization. Carbon concentrations of intra-aggregate particulate organic matter associated with microaggregates (iPOM-m) and microaggregates occluded within macroaggregates (iPOM-mM) in NT were 1.6 and 1.8 times greater than those in CT, respectively. Carbon proportions of iPOM-n and iPOM-mM in the total SOC increased from 5.4% and 6.3% in CT to 7.2% and 9.7% in NT, respectively. Furthermore, the difference in the microaggregate protected C (i. e., iPOM-m and iPOM-mM) between NT and CT could explain 45.4% of the difference in the whole SOC. The above results indicate that NT stimulates C accumulation within microaggregates which then are further acted upon in the soil to form macroaggregates. The shift of SOC within microaggregates is beneficial for long-term C sequestration in soil. We also corroborate that the microaggregate protected C is useful as a pool for assessing the impact of tillage management on SOC storage.
基金supported by the Ministry of Science and Technology project 973(2011CB403203)Youth science foundations in Heilongjiang province(QC2012C003)Youth science foundations in college of forest in Heilingjiang province(201415)
文摘Studying contents and seasonal dynamics of active organic carbon in the soil is an important method for revealing the turnover and regulation mechanism of soil carbon pool. Through 3 years of field sampling and lab analysis, we studied the seasonal variations, content differences, and interrelationships of total organic carbon (TOC), light fraction organic carbon (LFOC), and particulate organic carbon (POC) of the soil in the forest areas burned with different fire intensities in the Daxing'anling Mountains. The mean TOC content in the low-intensity burned area was greater than that in the unburned area, moderate-intensity, and high-intensity burned areas in June and November (P 〈 0.05). LFOC and POC in the low-intensity burned area were greater than that in either moderate-intensity or high-intensity burned areas, with significant differences in LFOC in September and November (P 〈 0.05). A significant difference in LFOC between the unburned and burned areas was only found in July (P 〈 0.05). However, the differences in POC between the unburned and burned areas were not significant in all the whole seasons (P 〉 0.05). Soil LFOC and POC varied significantly with the seasons (P 〈 0.05) in the Daxing'anling Mountains. Significant linear relationships were observed between soil TOC, LFOC, and POC, which were positively correlated with soil nitrogen and negatively correlated with soil temperature in the Daxing'anling Mountains.
文摘Organic carbon, total nitrogen, amino acids, sugars, and chlorophyll were determined in < 1 mm fractions of the samples collected by successive large aperture time-series sediment traps (Honjo-Mark Ⅵ ) in northern China China Sea during September 1987 to October1988. The ratio of C/N and the relative abundance of amino acids and sugars show that organicmatter in the settling particles from northem South China Sea is derived mainly from marineplantkon (especially phytoplankton). The organic carbon fluxes in our sediment traps are lowerthan those in other sediment traps. But the relative contents of Corg/total particulate matter aregenerally similar to those in the Panama Basin, Arabian Sea and Subarctic Pacific. It is suggested that monsoon-caused changes of physical and chemical conditions in the upper euphoticlayer would contro the fluxes of organic matter as well as its composition and transport innorthern South China Sea.
文摘Sinking particulate material collected from Nansha Yongshu reef lagoon and the continental shelf of the East China Sea by sediment traps has been analyzed and studied for the first time using organic geochemical method. The results show that about half of the sinking particulate organic matter in the two study areas are consumed before reaching the depth of 5 m to the sea floor and the degree of this consumption in Yongshu reef lagoon is larger than that in the continental shelf of the East China Sea. The distributions of hydrocarbons and fatty acids indicate that the minor difference of biological sources of sinking particulate organic matter exists between Yongshu reef lagoon and the continental shelf of the East China Sea, but they mainly come from marine plankton. Stronger biological and biochemical transformations of sinking particulate organic matter are also observed and the intensity of this transformation in Yongshu reef lagoon is greater than that in the continental shelf of the East China Sea. It is found that the occurrence of C 25 highly branched isoprenoid (HBI) diene may be related to the composition of diatom species.
基金This research was supported by the Major Science and Technology Program of the Ministry of Environment protection of China(Nos.2019YFC0408601 and 2019YFC0408602)the National Natural Science Foundation of China(Grant Nos.51708386,21501129 and 21707099)+5 种基金the China Postdoctoral Science Foundation(No.2016M-591416)the State Key Laboratory of Pollution Control and Resource Reuse Foundation(No.PCRRF17021)the Scientific and Technological Project of Shanxi Province(No.201701D221230)the Key Research and.Development(R&D)Project of Shanxi Province(Nos.201903D321057 and 201903D321055)the Youth Science and Technology Foundation of Gansu Province(Nos.1506RJYA154 and 18JR3RA023)the Provincial Science and Technology Plan Projects of Gansu Province(No.2015017).
文摘To address the availability of carbon sources for denitrification,the accelerated hydrolysis of the most abundant but low-availability fraction of particulate organic matter(POM)was investigated.Mesh sieves with different pore sizes were used as primary pretreatment at the start-up-stage of the biological process to separate some POM from the liquid system.The changes in soluble carbohydrates and proteins were monitored to investigate the hydrolysis performance of the sieved POM,with waste activated sludge(WAS)as the control test.The results showed that an average of 35%POM could be entrapped before filtrate mat development.In addition,benefiting from the high polysaccharides concentration,as well as the high availability due to the relatively loose physical structure,a 23%hydrolysis efficiency of POM was obtained,in contrast to that of WAS(3.4%),with a hydrolysis constant of 0.39 h^(−1).The prominent performance was also attributed to the unique microbial communities having been domesticated at a lower temperature,especially the cellulose-degrading bacteria Paraclostridium and psychrophile Psychrobacter,making up 6.94%and 2.56%,respectively.Furthermore,the potential benefits and application of improved POM hydrolysis by start-up stage recovery via mesh sieves combined with anaerobic fermentation were evaluated,including selective POM entrapment,alleviation of blockage and wear,and a reduction in aeration energy.By the proposed strategy,carbon availability for biological nutrient removal(BNR)processes is anticipated to be improved more economically than that can be achieved by primary clarifier elimination.