The alteration in surface color of metallic glasses(MGs)holds great significance in the context of microstructuredesign and commercial utility.It is essential to accurately describe the structures that are formed duri...The alteration in surface color of metallic glasses(MGs)holds great significance in the context of microstructuredesign and commercial utility.It is essential to accurately describe the structures that are formed during the laser and colorseparation processes in order to develop practical laser coloring applications.Due to the high oxidation sensitivity of Labasedmetallic glass,it can broaden the color range but make it more complex.Structure coloring by laser processing on thesurface of La-based metallic glass can be conducted after thermoplastic forming.It is particularly important to clarify therole of structure and composition in the surface coloring process.The aim is to study the relationship between amorphoussurface structural color,surface geometry,and oxide formation by laser processing in metallic glasses.The findings revealedthat the periodic structure primarily determines the surface color at laser energy densities below 1.0 J/mm^(2).In contrast,thesurface color predominantly depends on the proportion of oxides that are formed when energy densities exceed 1.0 J/mm^(2).Consequently,this study provides a novel concept for the fundamental investigation of laser coloring and establishes a newavenue for practical application.展开更多
To move the performance of lithium-ion batteries into the next stage,the modification of the structure of cells is the only choice except for the development of materials exhibiting higher performance.In this review p...To move the performance of lithium-ion batteries into the next stage,the modification of the structure of cells is the only choice except for the development of materials exhibiting higher performance.In this review paper,the employment of through-holing structures of anodes and cathodes prepared with a picosecond pulsed laser has been proposed.The laser system and the structure for improving the battery performance were introduced.The performance of laminated cells constructed with through-holed anodes and cathodes was reviewed from the viewpoints of the improvement of high-rate performance and energy density,removal of unbalanced capacities on both sides of the current collector,even greater high-rate performance by hybridizing cathode materials and removal of irreversible capacity.In conclusion,the points that should be examined and the problem for the through-holed structure to be in practical use are summarized.展开更多
As an intense picosecond laser pulse irradiates a hydrocarbon target,the protons therein can be accelerated by the radiation pressure as well as the sheath field behind the target.We investigate the effect of the lase...As an intense picosecond laser pulse irradiates a hydrocarbon target,the protons therein can be accelerated by the radiation pressure as well as the sheath field behind the target.We investigate the effect of the laser and hydrocarbon target parameters on proton acceleration with two/threedimensional particle-in-cell simulations.It is found that the resulting two-ion species plasma can generate a multiple peaked charge-separation field that accelerates the protons.In particular,a smaller carbon-to-hydrogen ratio,as well as the thinner and/or lower density of the target,leads to a larger sheath field and thus proton beams with a larger cutoff energy and smoother energy spectrum.These results may be useful in achieving high-flux quasi-monoenergetic proton beams by properly designing the hydrocarbon target.展开更多
Fluorescence spectra of native purple bacterial reaction center (RC) and bacterial pheophytin (Bphe) replaced RCs were obtained from 600 nm to 900 nm with a selective excitation at 597 nm. With the help of measuring ...Fluorescence spectra of native purple bacterial reaction center (RC) and bacterial pheophytin (Bphe) replaced RCs were obtained from 600 nm to 900 nm with a selective excitation at 597 nm. With the help of measuring the fluorescence from bacterial chlorophyll, bacterial pheophytin and plant pheophytin, the corresponding components in the RCs are classified for fluorescence emission. Results showed that pheophytin substitution influences the composition of fluorescence spectra. Therefore, four, three and two components were obtained from fluorescence spectra of native RC, Bphe B_replaced RC and Bphe A,B _replaced RC, respectively. Fluorescence components are well correlated to the binding of plant pheophytin. The decay of excited state of primary electron donor P in different RCs was also studied by measuring the fluorescence decay at 686.4, 674.1 and 681.1 nm, respectively. The decaying kinetics changed in different RCs, indicating that pheophytin replacement influenced the energy transduction and primary photochemical reaction in purple bacterial reaction centers.展开更多
Thylakoid membrane preparations of super high-yield hybrid rice (Oryza sativa L.), Liangyoupeijiu (P9) and Shanyou 63 (SH 63) were used for investigating its spectral and time properties by using picosecond time-resol...Thylakoid membrane preparations of super high-yield hybrid rice (Oryza sativa L.), Liangyoupeijiu (P9) and Shanyou 63 (SH 63) were used for investigating its spectral and time properties by using picosecond time-resolved fluorescence spectrum measuring system. The thylakoid membrane preparations of P9 and SH 63 were excited by an Ar+ laser with a pulse width of 120 ps, repetition rate of 4 MHz and wavelength of 514 nm. The time constants of the excited energy transfer in these two varieties at flowering stage and grain filling stage were calculated from the experimental data. Based on the comparative studies of the time and spectral properties of the excited fluorescence in these ultrafast dynamic experiments the following was found: at both the flowering stage and grain filling stage, the speed of the excitation energy transfer, in photosystem was faster than that in photosystem II in P9 variety; and the speed of the excitation energy transfer at grain filling stage was faster than those at flowering stage for both rice varieties; the experiments also implied that the components and assembly of pigments in SH 63, but not in P9, changed during the process from flowering stage to grain filling stage for in these two rice varieties.展开更多
Precision drilling with picosecond laser has been advocated to significantly improve the quality of micro-holes with reduced recast layer thickness and almost no heat affected zone.However,a detailed comparison betwee...Precision drilling with picosecond laser has been advocated to significantly improve the quality of micro-holes with reduced recast layer thickness and almost no heat affected zone.However,a detailed comparison between nanosecond and picosecond laser drilling techniques has rarely been reported in previous research.In the present study,a series of micro-holes are manufactured on stainless steel 304 using a nanosecond and a picosecond laser drilling system,respectively.The quality of the micro-holes,e.g.,recast layer,micro-crack,circularity,and conicity,etc,is evaluated by employing an optical microscope,an optical interferometer,and a scanning electron microscope.Additionally,the micro-structure of the samples between the edges of the micro-holes and the parent material is compared following etching treatment.The researching results show that a great amount of spattering material accumulated at the entrance ends of the nanosecond laser drilled micro-holes.The formation of a recast layer with a thickness of;5μm is detected on the side walls,associated with initiation of micro-cracks.Tapering phenomenon is also observed and the circularity of the micro-holes is rather poor.With regard to the micro-holes drilled by picosecond laser,the entrance ends,the exit ends,and the side walls are quite smooth without accumulation of spattering material,formation of recast layer and micro-cracks.The circularity of the micro-holes is fairly good without observation of tapering phenomenon.Furthermore,there is no obvious difference as for the micro-structure between the edges of the micro-holes and the parent material.This study proposes a picosecond laser helical drilling technique which can be used for effective manufacturing of high quality micro-holes.展开更多
In this investigation,a picosecond laser was employed to fabricate surface textures on a Stavax steel substrate,which is a key material for mold fabrication in the manufacturing of various polymer products.Three main ...In this investigation,a picosecond laser was employed to fabricate surface textures on a Stavax steel substrate,which is a key material for mold fabrication in the manufacturing of various polymer products.Three main types of surface textures were fabricated on a Stavax steel substrate:periodic ripples,a two-scale hierarchical two-dimensional array of micro-bumps,and a micro-pits array with nanoripples.The wettability of the laser-textured Stavax steel surface was converted from its original hydrophilicity into hydrophobicity and even super-hydrophobicity after exposure to air.The results clearly show that this super-hydrophobicity is mainly due to the surface textures.The ultrafast laserinduced catalytic effect may play a secondary role in modifying the surface chemistry so as to lower the surface energy.The laser-induced surface textures on the metal mold substrates were then replicated onto polypropylene substrates via the polymer injection molding process.The surface wettability of the molded polypropylene was found to be changed from the original hydrophilicity to superhydrophobicity.This developed process holds the potential to improve the performance of fabricated plastic products in terms of wettability control and easy cleaning.展开更多
Electron energy relaxation timeτis one of the key physical parameters for electronic materials.In this study,we develop a new technique to measureτin a semiconductor via monochrome picosecond(ps)terahertz(THz)pump a...Electron energy relaxation timeτis one of the key physical parameters for electronic materials.In this study,we develop a new technique to measureτin a semiconductor via monochrome picosecond(ps)terahertz(THz)pump and probe experiment.The special THz pulse structure of Chinese THz free-electron laser(CTFEL)is utilized to realize such a technique,which can be applied to the investigation into THz dynamics of electronic and optoelectronic materials and devices.We measure the THz dynamical electronic properties of high-mobility n-GaSb wafer at 1.2 THz,1.6 THz,and 2.4 THz at room temperature and in free space.The obtained electron energy relaxation time for n-GaSb is in line with that measured via,e.g.,four-wave mixing techniques.The major advantages of monochrome ps THz pump-probe in the study of electronic and optoelectronic materials are discussed in comparison with other ultrafast optoelectronic techniques.This work is relevant to the application of pulsed THz free-electron lasers and also to the development of advanced ultrafast measurement technique for the investigation of dynamical properties of electronic and optoelectronic materials.展开更多
We theoretically study the nonlinear compression of a 20-rnJ, 1030-nm picosecond chirped pulse from the thin-disk amplifier in a krypton gas-filled hollow-core fiber. The chirp from the thin-disk amplifier system has ...We theoretically study the nonlinear compression of a 20-rnJ, 1030-nm picosecond chirped pulse from the thin-disk amplifier in a krypton gas-filled hollow-core fiber. The chirp from the thin-disk amplifier system has little influence on the initial pulse, however, it shows an effect on the nonlinear compression in hollow-core fiber. We use a large diameter hollow waveguide to restrict undesirable nonlinear effects such as ionization; on the other hand, we employ suitable gas pressure and fiber length to promise enough spectral broadening; with 600-μm, 6-bar (1 bar = 105 Pa), 1.8-m hollow fiber, we obtain 31.5-fs pulse. Moreover, we calculate and discuss the optimal fiber lengths and gas pressures with different initial durations induced by different grating compression angles for reaching a given bandwidth. These results are meaningful for a compression scheme from picoseconds to femtoseconds.展开更多
Currently,laser-induced structural modifications in optical materials have been an active field of research.In this paper,we reported structural modifications in the bulk of sapphire due to picosecond(ps)laser filamen...Currently,laser-induced structural modifications in optical materials have been an active field of research.In this paper,we reported structural modifications in the bulk of sapphire due to picosecond(ps)laser filamentation and analyzed the ionization dynamics of the filamentation.Numerical simulations uncovered that the high-intensity ps laser pulses generate plasma through multi-photon and avalanche ionizations that leads to the creation of two distinct types of structural changes in the material.The experimental bulk modifications consist of a void like structures surrounded by cracks which are followed by a submicrometer filamentary track.By increasing laser energy,the length of the damage and filamentary track appeared to increase.In addition,the transverse diameter of the damage zone increased due to the electron plasma produced by avalanche ionizations,but no increase in the filamentary zone diameter was observed with increasing laser energy.展开更多
We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid(chloroform,CHCl3)with^2 ps laser pulses at an input energy of^350μJ.The synthesized aluminum nanoparticles exhibited a su...We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid(chloroform,CHCl3)with^2 ps laser pulses at an input energy of^350μJ.The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at^340 nm.Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of(27±3.6)nm.The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles.In addition to spherical aluminum nanoparticles,triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution.Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures(LIPSSs),which were the high spatial frequency LIPSSs(HSF-LIPSSs)since their grating period was^280 nm.Additionally,coarse structures with a period of^700 nm were observed.展开更多
We demonstrate a high-emciency mid-infrared picosecond optical parametric oscillator (OPO) based on MgO doped periodically poled lithium niobate (MgO:PPLN) with a laser diode array (LDA) pumped Innoslab amplifi...We demonstrate a high-emciency mid-infrared picosecond optical parametric oscillator (OPO) based on MgO doped periodically poled lithium niobate (MgO:PPLN) with a laser diode array (LDA) pumped Innoslab amplifier as the pumping source. Under a 16 W synchronously pumping power, 4.5 W of idler light at 2896nm is obtained. A tuning range of idler light from 2688nm to 3016nm is achieved, within which the highest optical-optical conversion ettlciency from pump power to OPO output is 35.1%. Moreover, a signal light of -500mW from 1644 to 1700nm with a repetition rate of 233.8 MHz is generated.展开更多
We theoretically study the nonlinear compression of picosecond pulses with 10-m J of input energy at the 1053-nm center wavelength by using a one-meter-long gas-filled hollow-core fiber(HCF) compressor and consideri...We theoretically study the nonlinear compression of picosecond pulses with 10-m J of input energy at the 1053-nm center wavelength by using a one-meter-long gas-filled hollow-core fiber(HCF) compressor and considering the third-order dispersion(TOD) effect. It is found that when the input pulse is about 1 ps/10 m J, it can be compressed down to less than20 fs with a high transmission efficiency. The gas for optimal compression is krypton gas which is filled in a HCF with a 400-μm inner diameter. When the input pulse duration is increased to 5 ps, it can also be compressed down to less than 100 fs efficiently under proper conditions. The results show that the TOD effect has little impact on picosecond pulse compression and the HCF compressor can be applied on compressing picosecond pulses efficiently with a high compression ratio, which will benefit the research of high-field laser physics.展开更多
Silicon infiltrated silicon carbide (Si-SiC) ceramics, as high hardness materials, are difficult to machine, especially drilling micro-holes. In this study, the interaction of picosecond laser pulses (1 ps at 1 030...Silicon infiltrated silicon carbide (Si-SiC) ceramics, as high hardness materials, are difficult to machine, especially drilling micro-holes. In this study, the interaction of picosecond laser pulses (1 ps at 1 030 nm) with Si-SiC ceramics was investigated. Variations of the diameter and depth of circular holes with the growth of the laser energy density were obtained. The results indicate that the increase of machining depth follows a nonlinear relation with the increasing of laser energy density, while the diameter has little change with that. Moreover, it is found that some debris and particles are deposited around and inside the holes and waviness is in the entrance and at walls of the holes after laser processing.展开更多
Fog harvesting has been considered as a promising method for solving water crisis in underdeveloped regions.To mimic and optimize the alleged natural fog harvesting ability of the stenocara beetle,hybrid superhydropho...Fog harvesting has been considered as a promising method for solving water crisis in underdeveloped regions.To mimic and optimize the alleged natural fog harvesting ability of the stenocara beetle,hybrid superhydrophobic(hydrophobic,superhydrophilic)/hydrophilic patterns are processed on stainless steel via picosecond laser direct writing.Basically,after laser processing,the surfaces of stainless steel change from hydrophilic to superhydrophilic.Then,after chemical and heat treatment,the superhydrophilic surfaces become superhydrophobic with ultra-low adhesion,and superhydrophobic(hydrophobic)with ultra-high adhesion,respectively.This work systematically examines the fog harvesting ability of picosecond laser treated surfaces(LTS),pristine surfaces(PS),laser and chemical treated surfaces(LCTS),laser and heat-treated surfaces(LHTS).Compared with the PS,the as-prepared surfaces enhanced the fog harvesting efficiency by 50%.This work provides a fast and simple method to fog collectors,which offer a great opportunity to develop water harvesters for real world applications.展开更多
Studied is the Super-continuum(SC) generation of a normal-dispersion photonic crystal fiber(PCF) using picosecond pulse excitation. In experimental analyses, a 237 nm broadband infrared continuum was generated pumped ...Studied is the Super-continuum(SC) generation of a normal-dispersion photonic crystal fiber(PCF) using picosecond pulse excitation. In experimental analyses, a 237 nm broadband infrared continuum was generated pumped at 1 550 nm(normal dispersion regime) by 1.6 ps pulses from an erbium-doped fiber laser. In addition, we conduct the numerical analyses of SC based on generalized nonlinear Schr dionger equation. The results have been applied to investigate the dominant physical processes underlie the generation of SC. We conclude that dispersion, self-phase modulation(SPM),four-wave-mixing(FWM) and Raman scattering are determinants of SC generation rather than fission of soliton in normal-dispersion PCF.展开更多
The influence of the picosecond(ps) pulsed burst with a nanosecond scale of temporal separation(50 ns) on filamentary traces in sapphire substrate is investigated. The spatiotemporal evolution of the filamentary plasm...The influence of the picosecond(ps) pulsed burst with a nanosecond scale of temporal separation(50 ns) on filamentary traces in sapphire substrate is investigated. The spatiotemporal evolution of the filamentary plasma string induced by sub-pulses of the burst-mode is revealed according to the analysis of the instantaneous photoluminescence images. Due to the presence of residual plasma, the energy loss of sub-pulse during the balancing of self-focusing effect is reduced, and thus refreshes the plasma via refocusing. The refreshed plasma peak generated by the subsequent subpulse appears at relatively low density positions in the formed filamentary plasma string, which results in more uniform densities and less spatial overlap among the plasma peaks. The continuity and uniformity of the filamentary trace in sapphire are enhanced by the burst-mode. Besides, the burst filamentary propagation can also remain effective when the sub-pulse energy is below the self-focusing threshold. Based on this uniform and precise energy propagation mode, the feasibility of its use for the laser lift-off(LLO) process is verified.展开更多
We propose a fiber-solid hybrid system which consists of a semiconductor saturable absorber mirror(SESAM)modelocked fiber seed with a pulse width of 10.2 ps and a repetition rate of 18.9 MHz,a two-level fiber pre-ampl...We propose a fiber-solid hybrid system which consists of a semiconductor saturable absorber mirror(SESAM)modelocked fiber seed with a pulse width of 10.2 ps and a repetition rate of 18.9 MHz,a two-level fiber pre-amplifier and a double-passing end-pumped Nd:YVO4 amplifier.In the solid-state amplifier,to enhance the gain and the extraction efficiency,a specially designed structure in which the seed light passes through the gain medium four times and makes full use of population inversion is used as the double-passing amplifier.Besides,the beam filling factor(the ratio of the seed light diameter to the pump light diameter)and the thermal lens effect of the double-passing amplifier are considered and its optical-to-optical conversion efficiency is further improved.To preserve the beam quality of the double-passing amplifier,a new method of spherical-aberration self-compensation based on the principles of geometrical optics is used and discussed.Our system achieves a maximum average power of 9.5Wat the pump power of 28W,corresponding to an optical-to-optical efficiency of 27%.And the beam quality factor M^2 reaches 1.3 at the maximum output power.展开更多
We demonstrate a novel picosecond optical parametric preamplification to generate high-stability, high-energy and high-contrast seed pulses. The 5ps seed pulse is amplified from 60pJ to 300μJ with an 8.6ps/ 3mJ pump ...We demonstrate a novel picosecond optical parametric preamplification to generate high-stability, high-energy and high-contrast seed pulses. The 5ps seed pulse is amplified from 60pJ to 300μJ with an 8.6ps/ 3mJ pump laser in a signal stage of short pulse non-collinear optical parametric chirped pulse amplification. The total gain is more than 106 and the rms energy stability is under 1.35%. The contrast ratio is higher than 10s within a scale of 20ps before the main pulse. Consequently, the improvement factor of the signal contrast is approximately equal to the gain 106 outside the pump window.展开更多
Pulse-burst 1064-nm picosecond azimuthal polarization beam amplification up to an average power of 16.32 W using side-pumped Nd: YAG amplifiers has been demonstrated. The maximum envelop energy as much as 16.32 mJ, co...Pulse-burst 1064-nm picosecond azimuthal polarization beam amplification up to an average power of 16.32 W using side-pumped Nd: YAG amplifiers has been demonstrated. The maximum envelop energy as much as 16.32 mJ, corresponding to a power amplification factor of 299.5%. A simple criterion was defined to help estimate the amount of depolarization in Nd:YAG amplifier stages. The degree of depolarization of the beam was 7.1% and the beam quality was measured to be M2= 3.69. The reason for the azimuthal polarization depolarization and beam quality degradation were explained theoretically and experimentally during the amplification process.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52071222 and 52471180)Guangdong Major Project of Basic and Applied Basic Research,China(Grant No.2019B030302010)+2 种基金Guangdong Basic and Applied Basic Research,China(Grant No.2020B1515130007)the National Key Research and Development Program of China(Grant No.2021YFA0716302)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000).
文摘The alteration in surface color of metallic glasses(MGs)holds great significance in the context of microstructuredesign and commercial utility.It is essential to accurately describe the structures that are formed during the laser and colorseparation processes in order to develop practical laser coloring applications.Due to the high oxidation sensitivity of Labasedmetallic glass,it can broaden the color range but make it more complex.Structure coloring by laser processing on thesurface of La-based metallic glass can be conducted after thermoplastic forming.It is particularly important to clarify therole of structure and composition in the surface coloring process.The aim is to study the relationship between amorphoussurface structural color,surface geometry,and oxide formation by laser processing in metallic glasses.The findings revealedthat the periodic structure primarily determines the surface color at laser energy densities below 1.0 J/mm^(2).In contrast,thesurface color predominantly depends on the proportion of oxides that are formed when energy densities exceed 1.0 J/mm^(2).Consequently,this study provides a novel concept for the fundamental investigation of laser coloring and establishes a newavenue for practical application.
文摘To move the performance of lithium-ion batteries into the next stage,the modification of the structure of cells is the only choice except for the development of materials exhibiting higher performance.In this review paper,the employment of through-holing structures of anodes and cathodes prepared with a picosecond pulsed laser has been proposed.The laser system and the structure for improving the battery performance were introduced.The performance of laminated cells constructed with through-holed anodes and cathodes was reviewed from the viewpoints of the improvement of high-rate performance and energy density,removal of unbalanced capacities on both sides of the current collector,even greater high-rate performance by hybridizing cathode materials and removal of irreversible capacity.In conclusion,the points that should be examined and the problem for the through-holed structure to be in practical use are summarized.
基金the National Key R&D Program of China(No.2016YFA0401100)National Natural Science Foundation of China(Nos.12175154,11875092,and 12005149)+1 种基金the Natural Science Foundation of Top Talent of SZTU(Nos.2019010801001 and 2019020801001)The EPOCH code is used under UK EPSRC contract(EP/G055165/1 and EP/G056803/1).
文摘As an intense picosecond laser pulse irradiates a hydrocarbon target,the protons therein can be accelerated by the radiation pressure as well as the sheath field behind the target.We investigate the effect of the laser and hydrocarbon target parameters on proton acceleration with two/threedimensional particle-in-cell simulations.It is found that the resulting two-ion species plasma can generate a multiple peaked charge-separation field that accelerates the protons.In particular,a smaller carbon-to-hydrogen ratio,as well as the thinner and/or lower density of the target,leads to a larger sheath field and thus proton beams with a larger cutoff energy and smoother energy spectrum.These results may be useful in achieving high-flux quasi-monoenergetic proton beams by properly designing the hydrocarbon target.
基金The State Key Basic Research and Development Plan(G1998010100)the National Natural Science Foundation of China(39870161).
文摘Fluorescence spectra of native purple bacterial reaction center (RC) and bacterial pheophytin (Bphe) replaced RCs were obtained from 600 nm to 900 nm with a selective excitation at 597 nm. With the help of measuring the fluorescence from bacterial chlorophyll, bacterial pheophytin and plant pheophytin, the corresponding components in the RCs are classified for fluorescence emission. Results showed that pheophytin substitution influences the composition of fluorescence spectra. Therefore, four, three and two components were obtained from fluorescence spectra of native RC, Bphe B_replaced RC and Bphe A,B _replaced RC, respectively. Fluorescence components are well correlated to the binding of plant pheophytin. The decay of excited state of primary electron donor P in different RCs was also studied by measuring the fluorescence decay at 686.4, 674.1 and 681.1 nm, respectively. The decaying kinetics changed in different RCs, indicating that pheophytin replacement influenced the energy transduction and primary photochemical reaction in purple bacterial reaction centers.
文摘Thylakoid membrane preparations of super high-yield hybrid rice (Oryza sativa L.), Liangyoupeijiu (P9) and Shanyou 63 (SH 63) were used for investigating its spectral and time properties by using picosecond time-resolved fluorescence spectrum measuring system. The thylakoid membrane preparations of P9 and SH 63 were excited by an Ar+ laser with a pulse width of 120 ps, repetition rate of 4 MHz and wavelength of 514 nm. The time constants of the excited energy transfer in these two varieties at flowering stage and grain filling stage were calculated from the experimental data. Based on the comparative studies of the time and spectral properties of the excited fluorescence in these ultrafast dynamic experiments the following was found: at both the flowering stage and grain filling stage, the speed of the excitation energy transfer, in photosystem was faster than that in photosystem II in P9 variety; and the speed of the excitation energy transfer at grain filling stage was faster than those at flowering stage for both rice varieties; the experiments also implied that the components and assembly of pigments in SH 63, but not in P9, changed during the process from flowering stage to grain filling stage for in these two rice varieties.
基金Supported by National Basic Research Program of China(Grant No.2011CB013004)National Natural Science Foundation of China(Grant No.51005130)Research Fund of State Key Laboratory of Tribology,Tsinghua University(Grant no.SKLT12B06)
文摘Precision drilling with picosecond laser has been advocated to significantly improve the quality of micro-holes with reduced recast layer thickness and almost no heat affected zone.However,a detailed comparison between nanosecond and picosecond laser drilling techniques has rarely been reported in previous research.In the present study,a series of micro-holes are manufactured on stainless steel 304 using a nanosecond and a picosecond laser drilling system,respectively.The quality of the micro-holes,e.g.,recast layer,micro-crack,circularity,and conicity,etc,is evaluated by employing an optical microscope,an optical interferometer,and a scanning electron microscope.Additionally,the micro-structure of the samples between the edges of the micro-holes and the parent material is compared following etching treatment.The researching results show that a great amount of spattering material accumulated at the entrance ends of the nanosecond laser drilled micro-holes.The formation of a recast layer with a thickness of;5μm is detected on the side walls,associated with initiation of micro-cracks.Tapering phenomenon is also observed and the circularity of the micro-holes is rather poor.With regard to the micro-holes drilled by picosecond laser,the entrance ends,the exit ends,and the side walls are quite smooth without accumulation of spattering material,formation of recast layer and micro-cracks.The circularity of the micro-holes is fairly good without observation of tapering phenomenon.Furthermore,there is no obvious difference as for the micro-structure between the edges of the micro-holes and the parent material.This study proposes a picosecond laser helical drilling technique which can be used for effective manufacturing of high quality micro-holes.
基金the Agency for Science Technology and Research (A*STAR) of Singapore for financial support
文摘In this investigation,a picosecond laser was employed to fabricate surface textures on a Stavax steel substrate,which is a key material for mold fabrication in the manufacturing of various polymer products.Three main types of surface textures were fabricated on a Stavax steel substrate:periodic ripples,a two-scale hierarchical two-dimensional array of micro-bumps,and a micro-pits array with nanoripples.The wettability of the laser-textured Stavax steel surface was converted from its original hydrophilicity into hydrophobicity and even super-hydrophobicity after exposure to air.The results clearly show that this super-hydrophobicity is mainly due to the surface textures.The ultrafast laserinduced catalytic effect may play a secondary role in modifying the surface chemistry so as to lower the surface energy.The laser-induced surface textures on the metal mold substrates were then replicated onto polypropylene substrates via the polymer injection molding process.The surface wettability of the molded polypropylene was found to be changed from the original hydrophilicity to superhydrophobicity.This developed process holds the potential to improve the performance of fabricated plastic products in terms of wettability control and easy cleaning.
基金the National Natural Science Foundation of China(Grant Nos.U1930116,U1832153,and 11574319)the Fund from the Center of Science and Technology of Hefei Academy of Sciences,China(Grant No.2016FXZY002)。
文摘Electron energy relaxation timeτis one of the key physical parameters for electronic materials.In this study,we develop a new technique to measureτin a semiconductor via monochrome picosecond(ps)terahertz(THz)pump and probe experiment.The special THz pulse structure of Chinese THz free-electron laser(CTFEL)is utilized to realize such a technique,which can be applied to the investigation into THz dynamics of electronic and optoelectronic materials and devices.We measure the THz dynamical electronic properties of high-mobility n-GaSb wafer at 1.2 THz,1.6 THz,and 2.4 THz at room temperature and in free space.The obtained electron energy relaxation time for n-GaSb is in line with that measured via,e.g.,four-wave mixing techniques.The major advantages of monochrome ps THz pump-probe in the study of electronic and optoelectronic materials are discussed in comparison with other ultrafast optoelectronic techniques.This work is relevant to the application of pulsed THz free-electron lasers and also to the development of advanced ultrafast measurement technique for the investigation of dynamical properties of electronic and optoelectronic materials.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB808101)the Funds from the Chinese Academy of Sciences,and the National Natural Science Foundation of China(Grant Nos.11127901,10734080,61221064,60908008,and 61078037)
文摘We theoretically study the nonlinear compression of a 20-rnJ, 1030-nm picosecond chirped pulse from the thin-disk amplifier in a krypton gas-filled hollow-core fiber. The chirp from the thin-disk amplifier system has little influence on the initial pulse, however, it shows an effect on the nonlinear compression in hollow-core fiber. We use a large diameter hollow waveguide to restrict undesirable nonlinear effects such as ionization; on the other hand, we employ suitable gas pressure and fiber length to promise enough spectral broadening; with 600-μm, 6-bar (1 bar = 105 Pa), 1.8-m hollow fiber, we obtain 31.5-fs pulse. Moreover, we calculate and discuss the optimal fiber lengths and gas pressures with different initial durations induced by different grating compression angles for reaching a given bandwidth. These results are meaningful for a compression scheme from picoseconds to femtoseconds.
基金National Natural Science Foundation of China(51575013,51275011)National Key R&D Program of China(2018 YFB1107500)
文摘Currently,laser-induced structural modifications in optical materials have been an active field of research.In this paper,we reported structural modifications in the bulk of sapphire due to picosecond(ps)laser filamentation and analyzed the ionization dynamics of the filamentation.Numerical simulations uncovered that the high-intensity ps laser pulses generate plasma through multi-photon and avalanche ionizations that leads to the creation of two distinct types of structural changes in the material.The experimental bulk modifications consist of a void like structures surrounded by cracks which are followed by a submicrometer filamentary track.By increasing laser energy,the length of the damage and filamentary track appeared to increase.In addition,the transverse diameter of the damage zone increased due to the electron plasma produced by avalanche ionizations,but no increase in the filamentary zone diameter was observed with increasing laser energy.
文摘We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid(chloroform,CHCl3)with^2 ps laser pulses at an input energy of^350μJ.The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at^340 nm.Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of(27±3.6)nm.The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles.In addition to spherical aluminum nanoparticles,triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution.Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures(LIPSSs),which were the high spatial frequency LIPSSs(HSF-LIPSSs)since their grating period was^280 nm.Additionally,coarse structures with a period of^700 nm were observed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61275142,61308042,and 51321091the National Key Scientific Instrument and Equipment Development Project under Grant No 2011YQ030127the China Postdoctoral Science Foundation under Grant No 2014T70633
文摘We demonstrate a high-emciency mid-infrared picosecond optical parametric oscillator (OPO) based on MgO doped periodically poled lithium niobate (MgO:PPLN) with a laser diode array (LDA) pumped Innoslab amplifier as the pumping source. Under a 16 W synchronously pumping power, 4.5 W of idler light at 2896nm is obtained. A tuning range of idler light from 2688nm to 3016nm is achieved, within which the highest optical-optical conversion ettlciency from pump power to OPO output is 35.1%. Moreover, a signal light of -500mW from 1644 to 1700nm with a repetition rate of 233.8 MHz is generated.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11204328,61221064,61078037,11127901,and 11134010)the National Basic Research Program of China(Grant No.2011CB808101)+2 种基金the Commission of Science and Technology of Shanghai,China(Grant No.12dz1100700)the Natural Science Foundation of Shanghai,China(Grant No.13ZR1414800)the International Science and Technology Cooperation Program of China(Grant No.2011DFA11300)
文摘We theoretically study the nonlinear compression of picosecond pulses with 10-m J of input energy at the 1053-nm center wavelength by using a one-meter-long gas-filled hollow-core fiber(HCF) compressor and considering the third-order dispersion(TOD) effect. It is found that when the input pulse is about 1 ps/10 m J, it can be compressed down to less than20 fs with a high transmission efficiency. The gas for optimal compression is krypton gas which is filled in a HCF with a 400-μm inner diameter. When the input pulse duration is increased to 5 ps, it can also be compressed down to less than 100 fs efficiently under proper conditions. The results show that the TOD effect has little impact on picosecond pulse compression and the HCF compressor can be applied on compressing picosecond pulses efficiently with a high compression ratio, which will benefit the research of high-field laser physics.
基金Funded by National Natural Science Foundation of China(Nos.51332004,51302220,51472201)the Major National Scientific Instrument and Equipment Development Project(No.2011YQ12007504)+1 种基金Natural Science Foundation of Shaanxi Province(No.2014JQ6197)the Foundation Research of Northwestern Polytechnical University(No.JC20120204)
文摘Silicon infiltrated silicon carbide (Si-SiC) ceramics, as high hardness materials, are difficult to machine, especially drilling micro-holes. In this study, the interaction of picosecond laser pulses (1 ps at 1 030 nm) with Si-SiC ceramics was investigated. Variations of the diameter and depth of circular holes with the growth of the laser energy density were obtained. The results indicate that the increase of machining depth follows a nonlinear relation with the increasing of laser energy density, while the diameter has little change with that. Moreover, it is found that some debris and particles are deposited around and inside the holes and waviness is in the entrance and at walls of the holes after laser processing.
基金Project(52075302)supported by the National Natural Science Foundation of ChinaProject(ZR2021QE247)supported by the Shandong Provincial Natural Science Foundation,China+2 种基金Projects(ZR2018ZB0521,ZR2018ZA0401)supported by the Major Basic Research of Shandong Provincial Natural Science Foundation,ChinaProject(Kfkt2020-09)supported by the Open Research Fund of State Key Laboratory of High Performance Complex Manufacturing,Central South University,ChinaProject(52075302)supported by the Key Laboratory of High-efficiency and Clean Mechanical Manufacture(Shandong University),Ministry of Education,China。
文摘Fog harvesting has been considered as a promising method for solving water crisis in underdeveloped regions.To mimic and optimize the alleged natural fog harvesting ability of the stenocara beetle,hybrid superhydrophobic(hydrophobic,superhydrophilic)/hydrophilic patterns are processed on stainless steel via picosecond laser direct writing.Basically,after laser processing,the surfaces of stainless steel change from hydrophilic to superhydrophilic.Then,after chemical and heat treatment,the superhydrophilic surfaces become superhydrophobic with ultra-low adhesion,and superhydrophobic(hydrophobic)with ultra-high adhesion,respectively.This work systematically examines the fog harvesting ability of picosecond laser treated surfaces(LTS),pristine surfaces(PS),laser and chemical treated surfaces(LCTS),laser and heat-treated surfaces(LHTS).Compared with the PS,the as-prepared surfaces enhanced the fog harvesting efficiency by 50%.This work provides a fast and simple method to fog collectors,which offer a great opportunity to develop water harvesters for real world applications.
基金National Natural Science Foundation of China(60578043 , 60378011) Public Construction Foundation ofBeijing City(XK100130637)
文摘Studied is the Super-continuum(SC) generation of a normal-dispersion photonic crystal fiber(PCF) using picosecond pulse excitation. In experimental analyses, a 237 nm broadband infrared continuum was generated pumped at 1 550 nm(normal dispersion regime) by 1.6 ps pulses from an erbium-doped fiber laser. In addition, we conduct the numerical analyses of SC based on generalized nonlinear Schr dionger equation. The results have been applied to investigate the dominant physical processes underlie the generation of SC. We conclude that dispersion, self-phase modulation(SPM),four-wave-mixing(FWM) and Raman scattering are determinants of SC generation rather than fission of soliton in normal-dispersion PCF.
基金Project(51975017) supported by the National Natural Science Foundation of ChinaProject(KZ202110005012) supported by the Scientific Research Project of Beijing Educational Committee+1 种基金ChinaProject(2018YFB1107500) supported by the National Key R&D Program of China。
文摘The influence of the picosecond(ps) pulsed burst with a nanosecond scale of temporal separation(50 ns) on filamentary traces in sapphire substrate is investigated. The spatiotemporal evolution of the filamentary plasma string induced by sub-pulses of the burst-mode is revealed according to the analysis of the instantaneous photoluminescence images. Due to the presence of residual plasma, the energy loss of sub-pulse during the balancing of self-focusing effect is reduced, and thus refreshes the plasma via refocusing. The refreshed plasma peak generated by the subsequent subpulse appears at relatively low density positions in the formed filamentary plasma string, which results in more uniform densities and less spatial overlap among the plasma peaks. The continuity and uniformity of the filamentary trace in sapphire are enhanced by the burst-mode. Besides, the burst filamentary propagation can also remain effective when the sub-pulse energy is below the self-focusing threshold. Based on this uniform and precise energy propagation mode, the feasibility of its use for the laser lift-off(LLO) process is verified.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61675009 and 61325021)Key Program of Beijing Municipal Natural Science Foundation,China(Grant No.KZ201910005006).
文摘We propose a fiber-solid hybrid system which consists of a semiconductor saturable absorber mirror(SESAM)modelocked fiber seed with a pulse width of 10.2 ps and a repetition rate of 18.9 MHz,a two-level fiber pre-amplifier and a double-passing end-pumped Nd:YVO4 amplifier.In the solid-state amplifier,to enhance the gain and the extraction efficiency,a specially designed structure in which the seed light passes through the gain medium four times and makes full use of population inversion is used as the double-passing amplifier.Besides,the beam filling factor(the ratio of the seed light diameter to the pump light diameter)and the thermal lens effect of the double-passing amplifier are considered and its optical-to-optical conversion efficiency is further improved.To preserve the beam quality of the double-passing amplifier,a new method of spherical-aberration self-compensation based on the principles of geometrical optics is used and discussed.Our system achieves a maximum average power of 9.5Wat the pump power of 28W,corresponding to an optical-to-optical efficiency of 27%.And the beam quality factor M^2 reaches 1.3 at the maximum output power.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11604350 and 61405211
文摘We demonstrate a novel picosecond optical parametric preamplification to generate high-stability, high-energy and high-contrast seed pulses. The 5ps seed pulse is amplified from 60pJ to 300μJ with an 8.6ps/ 3mJ pump laser in a signal stage of short pulse non-collinear optical parametric chirped pulse amplification. The total gain is more than 106 and the rms energy stability is under 1.35%. The contrast ratio is higher than 10s within a scale of 20ps before the main pulse. Consequently, the improvement factor of the signal contrast is approximately equal to the gain 106 outside the pump window.
基金Project supported by the National Natural Science Foundation of China(Grant No.U1631240)the Education Commission Program of BeijingBeijing Natural Science Foundation(Grant No.KZ201510005001)
文摘Pulse-burst 1064-nm picosecond azimuthal polarization beam amplification up to an average power of 16.32 W using side-pumped Nd: YAG amplifiers has been demonstrated. The maximum envelop energy as much as 16.32 mJ, corresponding to a power amplification factor of 299.5%. A simple criterion was defined to help estimate the amount of depolarization in Nd:YAG amplifier stages. The degree of depolarization of the beam was 7.1% and the beam quality was measured to be M2= 3.69. The reason for the azimuthal polarization depolarization and beam quality degradation were explained theoretically and experimentally during the amplification process.