We theoretically study the nonlinear compression of picosecond pulses with 10-m J of input energy at the 1053-nm center wavelength by using a one-meter-long gas-filled hollow-core fiber(HCF) compressor and consideri...We theoretically study the nonlinear compression of picosecond pulses with 10-m J of input energy at the 1053-nm center wavelength by using a one-meter-long gas-filled hollow-core fiber(HCF) compressor and considering the third-order dispersion(TOD) effect. It is found that when the input pulse is about 1 ps/10 m J, it can be compressed down to less than20 fs with a high transmission efficiency. The gas for optimal compression is krypton gas which is filled in a HCF with a 400-μm inner diameter. When the input pulse duration is increased to 5 ps, it can also be compressed down to less than 100 fs efficiently under proper conditions. The results show that the TOD effect has little impact on picosecond pulse compression and the HCF compressor can be applied on compressing picosecond pulses efficiently with a high compression ratio, which will benefit the research of high-field laser physics.展开更多
A diode dual-end-pumped Nd:YVO4 regenerative amplifier is reported. The influence of the cavity stability on the performance of the regenerative amplifier is studied. The experimental results match well with the anal...A diode dual-end-pumped Nd:YVO4 regenerative amplifier is reported. The influence of the cavity stability on the performance of the regenerative amplifier is studied. The experimental results match well with the analysis at high pump power. The mode locking seed pulses with 15 ps pulse width and 10 nJ single pulse energy at 86 MHz are amplified up to 4.7 mJ at 1 kHz, corresponding to the maximum amplification about 0.5 x 106, by our regenerative amplifier. And an average power of 4.7 W is obtained at the repetition rate from 1 kHz to 10 kHz.展开更多
To identify the species in liquid surface using mass spectrometry,we must eliminate or reduce interferences during the vaporization or desorption of the species from the liquid surface.It is much more challenging to i...To identify the species in liquid surface using mass spectrometry,we must eliminate or reduce interferences during the vaporization or desorption of the species from the liquid surface.It is much more challenging to isolate the ionic,larger species from the liquid surface,because of the frangible structures and the higher solvation energies of those species.Here we demonstrate a new mass spectrometry in which the ionic species at the liquid surface can be desorbed with ultrasoft infrared picosecond laser pulses while the liquid surface is not breached.This laser desorption assisted mass spectrometry is not only a powerful tool to detect the fragile species but also promising to investigate vibrational energy transfer dynamics in the liquid surface.展开更多
As an intense picosecond laser pulse irradiates a hydrocarbon target,the protons therein can be accelerated by the radiation pressure as well as the sheath field behind the target.We investigate the effect of the lase...As an intense picosecond laser pulse irradiates a hydrocarbon target,the protons therein can be accelerated by the radiation pressure as well as the sheath field behind the target.We investigate the effect of the laser and hydrocarbon target parameters on proton acceleration with two/threedimensional particle-in-cell simulations.It is found that the resulting two-ion species plasma can generate a multiple peaked charge-separation field that accelerates the protons.In particular,a smaller carbon-to-hydrogen ratio,as well as the thinner and/or lower density of the target,leads to a larger sheath field and thus proton beams with a larger cutoff energy and smoother energy spectrum.These results may be useful in achieving high-flux quasi-monoenergetic proton beams by properly designing the hydrocarbon target.展开更多
We theoretically study the nonlinear compression of a 20-rnJ, 1030-nm picosecond chirped pulse from the thin-disk amplifier in a krypton gas-filled hollow-core fiber. The chirp from the thin-disk amplifier system has ...We theoretically study the nonlinear compression of a 20-rnJ, 1030-nm picosecond chirped pulse from the thin-disk amplifier in a krypton gas-filled hollow-core fiber. The chirp from the thin-disk amplifier system has little influence on the initial pulse, however, it shows an effect on the nonlinear compression in hollow-core fiber. We use a large diameter hollow waveguide to restrict undesirable nonlinear effects such as ionization; on the other hand, we employ suitable gas pressure and fiber length to promise enough spectral broadening; with 600-μm, 6-bar (1 bar = 105 Pa), 1.8-m hollow fiber, we obtain 31.5-fs pulse. Moreover, we calculate and discuss the optimal fiber lengths and gas pressures with different initial durations induced by different grating compression angles for reaching a given bandwidth. These results are meaningful for a compression scheme from picoseconds to femtoseconds.展开更多
We demonstrate a novel picosecond optical parametric preamplification to generate high-stability, high-energy and high-contrast seed pulses. The 5ps seed pulse is amplified from 60pJ to 300μJ with an 8.6ps/ 3mJ pump ...We demonstrate a novel picosecond optical parametric preamplification to generate high-stability, high-energy and high-contrast seed pulses. The 5ps seed pulse is amplified from 60pJ to 300μJ with an 8.6ps/ 3mJ pump laser in a signal stage of short pulse non-collinear optical parametric chirped pulse amplification. The total gain is more than 106 and the rms energy stability is under 1.35%. The contrast ratio is higher than 10s within a scale of 20ps before the main pulse. Consequently, the improvement factor of the signal contrast is approximately equal to the gain 106 outside the pump window.展开更多
Picosecond pulse pumped supercontinuum generation in photonic crystal fiber is investigated by performing a series of comparative experiments. The main purpose is to investigate the supercontinuum generation processes...Picosecond pulse pumped supercontinuum generation in photonic crystal fiber is investigated by performing a series of comparative experiments. The main purpose is to investigate the supercontinuum generation processes excited by a given pump source through the experimental study of some specific fibers. A 20-W all-fiber picosecond master oscillator-power amplifier (MOPA) laser is used to pump three different kinds of photonic crystal fibers for supercontinuum generation. Three diverse supercontinuum formation processes are observed to correspond to photonie crystal fibers with distinct dis- persion properties. The experimental results are consistent with the relevant theoretical results. Based on the above analyses, a watt-level broadband white light supercontinuum source spanning from 500 nm to beyond 1700 nm is demonstrated by using a picosecond fiber laser in combination with the matched photonic crystal fiber. The limitation of the group velocity matching curve of the photonic crystal fiber is also discussed in the paper.展开更多
Random lasers are a type of lasers that lack typical resonator structures,offering benefits such as easy integration,low cost,and low spatial coherence.These features make them popular for speckle-free imaging and ran...Random lasers are a type of lasers that lack typical resonator structures,offering benefits such as easy integration,low cost,and low spatial coherence.These features make them popular for speckle-free imaging and random number generation.However,due to their high threshold and phase instability,the production of picosecond random lasers has still been a challenge.In this work,we have developed three dyes incorporating polymer optical fibers doped with various scattering nanoparticles to produce short-pulsed random fiber lasers.Notably,stable picosecond random laser emission lasting600 ps is observed at a low pump energy of 50μJ,indicating the gain-switching mechanism.Population inversion and gain undergo an abrupt surge as the intensity of the continuously pumped light nears the threshold level.When the intensity of the continuously pumped light reaches a specific value,the number of inversion populations in the“scattering cavity”surpasses the threshold rapidly.Simulation results based on a model that considers power-dependent gain saturation confirmed the above phenomenon.This research helps expand the understanding of the dynamics behind random medium-stimulated emission in random lasers and opens up possibilities for mode locking in these systems.展开更多
A high power dual-wavelength Ti:sapphire laser system with wide turning range and high efficiency is described, which consists of two prism-dispersed resonators pumped by an a11-solid-state frequency-doubled Nd:YAG ...A high power dual-wavelength Ti:sapphire laser system with wide turning range and high efficiency is described, which consists of two prism-dispersed resonators pumped by an a11-solid-state frequency-doubled Nd:YAG laser. Tunable dual-wavelength outputs, with one wavelength range from 750nm to 795nm and the other from 80Ohm to 850nm, have been demonstrated. With a pump power of 23 W at 532nm, a repetition rate of 6.5kHz and a pulse width of 67.6ns, the maximum dual-wavelength output power of 5.6 W at 785.3nm and 812.1 run, with a pulse width of 17.2ns and a line width of 2nm, has been achieved, leading to an optical-to-optical conversion efficiency of 24.4%.展开更多
Achieving an all-fiber ultra-fast system with above kW average power and mJ pulse energy is extremely challenging.This paper demonstrated a picosecond monolithic master oscillator power amplifier system at a 25 MHz re...Achieving an all-fiber ultra-fast system with above kW average power and mJ pulse energy is extremely challenging.This paper demonstrated a picosecond monolithic master oscillator power amplifier system at a 25 MHz repetition frequency with an average power of approximately 1.2 kW,a pulse energy of approximately 48μJ and a peak power of approximately 0.45 MW.The nonlinear effects were suppressed by adopting a dispersion stretched seed pulse(with a narrow linewidth of 0.052 nm)and a multi-mode master amplifier with an extra-large mode area;then an ultimate narrow bandwidth of 1.32 nm and a moderately broadened pulse of approximately 107 ps were achieved.Meanwhile,the great spatio-temporal stability was verified experimentally,and no sign of transverse mode instability appeared even at the maximum output power.The system has shown great power and energy capability with a sacrificed beam propagation product of 5.28 mm·mrad.In addition,further scaling of the peak power and pulse energy can be achieved by employing a lower repetition and a conventional compressor.展开更多
Ultrashort pulsed laser-induced periodic surface structures(LIPSS)can be generated on difFerent kinds of materials,which are widely utilized for modifying surface properties such as wettability,adhesion,and tribologic...Ultrashort pulsed laser-induced periodic surface structures(LIPSS)can be generated on difFerent kinds of materials,which are widely utilized for modifying surface properties such as wettability,adhesion,and tribological,as well as optical performances.Previous studies have focused mainly on one-dimensional LIPSS(i.e.,line structure)generation.In this study,a picosecond pulsed laser was used to irradiate stainless-steel surfaces for generating two-dimensional LIPSS,namely nanodot structures,by cross-scanning the laser beam for a different number of times.The obtained nanodot structures were found to be super hydrophilic just after laser irradiation,but turned to be hydrophobic after exposure in air for a few days.By cross・scanning the laser beam for the same number of times,local LIPSS rewriting was realized.This study showed the possibility of improving the homogeneity of the surface properties of steel materials through laser-induced nanodot structuring.展开更多
Parametric interaction allows both forward and backward energy transfers among the three interacting waves.The back-conversion effect is usually detrimental when unidirectional energy transfer is desired.In this theor...Parametric interaction allows both forward and backward energy transfers among the three interacting waves.The back-conversion effect is usually detrimental when unidirectional energy transfer is desired.In this theoretical work,we manifest that the back-conversion effect underpins the direct generation of the picosecond pulse train without the need for a laser resonator.The research scenario is an optical parametric amplification(OPA)that consists of a second-order nonlinear medium,a quasi-continuous pump laser and a sinusoidal amplitude-modulated seed signal.The back-conversion of OPA can transfer the modulation peaks(valleys)of the incident signal into output valleys(peaks),which inherently induces spectral sidebands.The generation of each sideband is naturally accompanied with a phase shift of±π.In the regime of full-back-conversion,the amount and amplitude of the sidebands reach the maximum simultaneously,and their phase constitutes an arithmetic sequence,leading to the production of a picosecond pulse train.The generated picosecond pulse train can have an ultrahigh repetition rate of 40 GHz or higher,which may facilitate ultrafast applications with ultrahigh speed.展开更多
Ultrabroadband systems and ultrafast electronics require the generation,transmission,and processing of high-quality ultrashort pulses rang-ing from nanoseconds(ns)to picoseconds(ps),which include well-established and ...Ultrabroadband systems and ultrafast electronics require the generation,transmission,and processing of high-quality ultrashort pulses rang-ing from nanoseconds(ns)to picoseconds(ps),which include well-established and emerging applications of time-domain reflectometry,arbitrary wave-form generation,sampling oscilloscopes,frequency synthesis,through-wall radar imaging,indoor communication,radar surveillance,and medical radar detection.Impulse radar advancements in industrial,scientific,and medical(ISM)domains are,for example,driven by ns-scale-defined ultrawideband(UWB)technologies.Nevertheless,the generation of ultrashort ps-scale pulses is highly desired to achieve unprecedented performances in all these ap-plications and future systems.However,due to the variety and applicability of different pulse generation and compression techniques,the selection of optimum or appropriate pulse generators and compressors is difficult for practitioners and users.To this end,this article aims to provide a comprehen-sive overview of ultrashort ns and ps pulse generation and compression techniques.The proposed and developed pulse generators available in the litera-ture and on the market,which are characterized by their corresponding pros and cons,are also explored.The theoretical analysis of pulse generation us-ing a nonlinear transmission line(NLTL)presented in the literature is briefly explained as well.Additionally,a holistic overview of these pulse genera-tors from the perspective of applications is given to describe their utilization in practical systems.All of these techniques are well summarized and com-pared in terms of fundamental pulse parameters,and research gaps in specified areas are highlighted.A thorough discussion of previous research work on various topologies and techniques is presented,and potential future directions for technical advancement are examined.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11204328,61221064,61078037,11127901,and 11134010)the National Basic Research Program of China(Grant No.2011CB808101)+2 种基金the Commission of Science and Technology of Shanghai,China(Grant No.12dz1100700)the Natural Science Foundation of Shanghai,China(Grant No.13ZR1414800)the International Science and Technology Cooperation Program of China(Grant No.2011DFA11300)
文摘We theoretically study the nonlinear compression of picosecond pulses with 10-m J of input energy at the 1053-nm center wavelength by using a one-meter-long gas-filled hollow-core fiber(HCF) compressor and considering the third-order dispersion(TOD) effect. It is found that when the input pulse is about 1 ps/10 m J, it can be compressed down to less than20 fs with a high transmission efficiency. The gas for optimal compression is krypton gas which is filled in a HCF with a 400-μm inner diameter. When the input pulse duration is increased to 5 ps, it can also be compressed down to less than 100 fs efficiently under proper conditions. The results show that the TOD effect has little impact on picosecond pulse compression and the HCF compressor can be applied on compressing picosecond pulses efficiently with a high compression ratio, which will benefit the research of high-field laser physics.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50721004 and 60978032)
文摘A diode dual-end-pumped Nd:YVO4 regenerative amplifier is reported. The influence of the cavity stability on the performance of the regenerative amplifier is studied. The experimental results match well with the analysis at high pump power. The mode locking seed pulses with 15 ps pulse width and 10 nJ single pulse energy at 86 MHz are amplified up to 4.7 mJ at 1 kHz, corresponding to the maximum amplification about 0.5 x 106, by our regenerative amplifier. And an average power of 4.7 W is obtained at the repetition rate from 1 kHz to 10 kHz.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0450202).
文摘To identify the species in liquid surface using mass spectrometry,we must eliminate or reduce interferences during the vaporization or desorption of the species from the liquid surface.It is much more challenging to isolate the ionic,larger species from the liquid surface,because of the frangible structures and the higher solvation energies of those species.Here we demonstrate a new mass spectrometry in which the ionic species at the liquid surface can be desorbed with ultrasoft infrared picosecond laser pulses while the liquid surface is not breached.This laser desorption assisted mass spectrometry is not only a powerful tool to detect the fragile species but also promising to investigate vibrational energy transfer dynamics in the liquid surface.
基金the National Key R&D Program of China(No.2016YFA0401100)National Natural Science Foundation of China(Nos.12175154,11875092,and 12005149)+1 种基金the Natural Science Foundation of Top Talent of SZTU(Nos.2019010801001 and 2019020801001)The EPOCH code is used under UK EPSRC contract(EP/G055165/1 and EP/G056803/1).
文摘As an intense picosecond laser pulse irradiates a hydrocarbon target,the protons therein can be accelerated by the radiation pressure as well as the sheath field behind the target.We investigate the effect of the laser and hydrocarbon target parameters on proton acceleration with two/threedimensional particle-in-cell simulations.It is found that the resulting two-ion species plasma can generate a multiple peaked charge-separation field that accelerates the protons.In particular,a smaller carbon-to-hydrogen ratio,as well as the thinner and/or lower density of the target,leads to a larger sheath field and thus proton beams with a larger cutoff energy and smoother energy spectrum.These results may be useful in achieving high-flux quasi-monoenergetic proton beams by properly designing the hydrocarbon target.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB808101)the Funds from the Chinese Academy of Sciences,and the National Natural Science Foundation of China(Grant Nos.11127901,10734080,61221064,60908008,and 61078037)
文摘We theoretically study the nonlinear compression of a 20-rnJ, 1030-nm picosecond chirped pulse from the thin-disk amplifier in a krypton gas-filled hollow-core fiber. The chirp from the thin-disk amplifier system has little influence on the initial pulse, however, it shows an effect on the nonlinear compression in hollow-core fiber. We use a large diameter hollow waveguide to restrict undesirable nonlinear effects such as ionization; on the other hand, we employ suitable gas pressure and fiber length to promise enough spectral broadening; with 600-μm, 6-bar (1 bar = 105 Pa), 1.8-m hollow fiber, we obtain 31.5-fs pulse. Moreover, we calculate and discuss the optimal fiber lengths and gas pressures with different initial durations induced by different grating compression angles for reaching a given bandwidth. These results are meaningful for a compression scheme from picoseconds to femtoseconds.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11604350 and 61405211
文摘We demonstrate a novel picosecond optical parametric preamplification to generate high-stability, high-energy and high-contrast seed pulses. The 5ps seed pulse is amplified from 60pJ to 300μJ with an 8.6ps/ 3mJ pump laser in a signal stage of short pulse non-collinear optical parametric chirped pulse amplification. The total gain is more than 106 and the rms energy stability is under 1.35%. The contrast ratio is higher than 10s within a scale of 20ps before the main pulse. Consequently, the improvement factor of the signal contrast is approximately equal to the gain 106 outside the pump window.
基金supported by the State Key Program of the National Natural Science Foundation of China(Grant No.61235008)the Postgraduate Innovation Foundation of National University of Defense Technology,China(Grant No.B110704)
文摘Picosecond pulse pumped supercontinuum generation in photonic crystal fiber is investigated by performing a series of comparative experiments. The main purpose is to investigate the supercontinuum generation processes excited by a given pump source through the experimental study of some specific fibers. A 20-W all-fiber picosecond master oscillator-power amplifier (MOPA) laser is used to pump three different kinds of photonic crystal fibers for supercontinuum generation. Three diverse supercontinuum formation processes are observed to correspond to photonie crystal fibers with distinct dis- persion properties. The experimental results are consistent with the relevant theoretical results. Based on the above analyses, a watt-level broadband white light supercontinuum source spanning from 500 nm to beyond 1700 nm is demonstrated by using a picosecond fiber laser in combination with the matched photonic crystal fiber. The limitation of the group velocity matching curve of the photonic crystal fiber is also discussed in the paper.
基金supported by the National Natural Science Foundation of China(Nos.12174002,11874012,11874126,and 51771186)the Excellent Scientific Research and Innovation Team of Anhui Province(No.2022AH010003)+3 种基金the Key Research and Development Plan of Anhui Province(No.202104a05020059)the Innovation Project for the ReturnedOverseasScholarsofAnhuiProvince(No.2021LCX011)the University Synergy Innovation Program of Anhui Province(No.GXXT-2020-052)the Anhui Young Wanjiang Scholars Talent Project(No.Z010118167)。
文摘Random lasers are a type of lasers that lack typical resonator structures,offering benefits such as easy integration,low cost,and low spatial coherence.These features make them popular for speckle-free imaging and random number generation.However,due to their high threshold and phase instability,the production of picosecond random lasers has still been a challenge.In this work,we have developed three dyes incorporating polymer optical fibers doped with various scattering nanoparticles to produce short-pulsed random fiber lasers.Notably,stable picosecond random laser emission lasting600 ps is observed at a low pump energy of 50μJ,indicating the gain-switching mechanism.Population inversion and gain undergo an abrupt surge as the intensity of the continuously pumped light nears the threshold level.When the intensity of the continuously pumped light reaches a specific value,the number of inversion populations in the“scattering cavity”surpasses the threshold rapidly.Simulation results based on a model that considers power-dependent gain saturation confirmed the above phenomenon.This research helps expand the understanding of the dynamics behind random medium-stimulated emission in random lasers and opens up possibilities for mode locking in these systems.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10474071, 60637010, 60671036 and 60278001, and the Tianjin Applied Fundamental Research Project under Grant No 07JCZDJC05900.
文摘A high power dual-wavelength Ti:sapphire laser system with wide turning range and high efficiency is described, which consists of two prism-dispersed resonators pumped by an a11-solid-state frequency-doubled Nd:YAG laser. Tunable dual-wavelength outputs, with one wavelength range from 750nm to 795nm and the other from 80Ohm to 850nm, have been demonstrated. With a pump power of 23 W at 532nm, a repetition rate of 6.5kHz and a pulse width of 67.6ns, the maximum dual-wavelength output power of 5.6 W at 785.3nm and 812.1 run, with a pulse width of 17.2ns and a line width of 2nm, has been achieved, leading to an optical-to-optical conversion efficiency of 24.4%.
基金This work was financially supported by the CAS Project for Young Scientists in Basic Research(No.YSBR-065)the National Natural Science Foundation of China(Nos.62225507,62175230,and U2033211)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.YJKYYQ20200001)。
文摘Achieving an all-fiber ultra-fast system with above kW average power and mJ pulse energy is extremely challenging.This paper demonstrated a picosecond monolithic master oscillator power amplifier system at a 25 MHz repetition frequency with an average power of approximately 1.2 kW,a pulse energy of approximately 48μJ and a peak power of approximately 0.45 MW.The nonlinear effects were suppressed by adopting a dispersion stretched seed pulse(with a narrow linewidth of 0.052 nm)and a multi-mode master amplifier with an extra-large mode area;then an ultimate narrow bandwidth of 1.32 nm and a moderately broadened pulse of approximately 107 ps were achieved.Meanwhile,the great spatio-temporal stability was verified experimentally,and no sign of transverse mode instability appeared even at the maximum output power.The system has shown great power and energy capability with a sacrificed beam propagation product of 5.28 mm·mrad.In addition,further scaling of the peak power and pulse energy can be achieved by employing a lower repetition and a conventional compressor.
文摘Ultrashort pulsed laser-induced periodic surface structures(LIPSS)can be generated on difFerent kinds of materials,which are widely utilized for modifying surface properties such as wettability,adhesion,and tribological,as well as optical performances.Previous studies have focused mainly on one-dimensional LIPSS(i.e.,line structure)generation.In this study,a picosecond pulsed laser was used to irradiate stainless-steel surfaces for generating two-dimensional LIPSS,namely nanodot structures,by cross-scanning the laser beam for a different number of times.The obtained nanodot structures were found to be super hydrophilic just after laser irradiation,but turned to be hydrophobic after exposure in air for a few days.By cross・scanning the laser beam for the same number of times,local LIPSS rewriting was realized.This study showed the possibility of improving the homogeneity of the surface properties of steel materials through laser-induced nanodot structuring.
基金This work was supported by the National Natural Science Foundation of China(Nos.61727820,61905142,61975120,and 91850203).
文摘Parametric interaction allows both forward and backward energy transfers among the three interacting waves.The back-conversion effect is usually detrimental when unidirectional energy transfer is desired.In this theoretical work,we manifest that the back-conversion effect underpins the direct generation of the picosecond pulse train without the need for a laser resonator.The research scenario is an optical parametric amplification(OPA)that consists of a second-order nonlinear medium,a quasi-continuous pump laser and a sinusoidal amplitude-modulated seed signal.The back-conversion of OPA can transfer the modulation peaks(valleys)of the incident signal into output valleys(peaks),which inherently induces spectral sidebands.The generation of each sideband is naturally accompanied with a phase shift of±π.In the regime of full-back-conversion,the amount and amplitude of the sidebands reach the maximum simultaneously,and their phase constitutes an arithmetic sequence,leading to the production of a picosecond pulse train.The generated picosecond pulse train can have an ultrahigh repetition rate of 40 GHz or higher,which may facilitate ultrafast applications with ultrahigh speed.
文摘Ultrabroadband systems and ultrafast electronics require the generation,transmission,and processing of high-quality ultrashort pulses rang-ing from nanoseconds(ns)to picoseconds(ps),which include well-established and emerging applications of time-domain reflectometry,arbitrary wave-form generation,sampling oscilloscopes,frequency synthesis,through-wall radar imaging,indoor communication,radar surveillance,and medical radar detection.Impulse radar advancements in industrial,scientific,and medical(ISM)domains are,for example,driven by ns-scale-defined ultrawideband(UWB)technologies.Nevertheless,the generation of ultrashort ps-scale pulses is highly desired to achieve unprecedented performances in all these ap-plications and future systems.However,due to the variety and applicability of different pulse generation and compression techniques,the selection of optimum or appropriate pulse generators and compressors is difficult for practitioners and users.To this end,this article aims to provide a comprehen-sive overview of ultrashort ns and ps pulse generation and compression techniques.The proposed and developed pulse generators available in the litera-ture and on the market,which are characterized by their corresponding pros and cons,are also explored.The theoretical analysis of pulse generation us-ing a nonlinear transmission line(NLTL)presented in the literature is briefly explained as well.Additionally,a holistic overview of these pulse genera-tors from the perspective of applications is given to describe their utilization in practical systems.All of these techniques are well summarized and com-pared in terms of fundamental pulse parameters,and research gaps in specified areas are highlighted.A thorough discussion of previous research work on various topologies and techniques is presented,and potential future directions for technical advancement are examined.