期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
In depth fusion flame spreading with a deuterium-tritium plane fuel density profile for plasma block ignition
1
作者 B.Malekynia S.S.Razavipour 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期317-321,共5页
Solid-state fuel ignition was given by Chu and Bobin according to the hydrodynamic theory at x = 0 qualitatively. A high threshold energy flux density, i.e., E* = 4.3 × 10^12 J/m2, has been reached. Recently, fa... Solid-state fuel ignition was given by Chu and Bobin according to the hydrodynamic theory at x = 0 qualitatively. A high threshold energy flux density, i.e., E* = 4.3 × 10^12 J/m2, has been reached. Recently, fast ignition by employing clean petawatt-picosecond laser pulses was performed. The anomalous phenomena were observed to be based on suppression of prepulses. The accelerated plasma block was used to ignite deuterium tritium fuel at solid-state density. The detailed analysis of the thermonuclear wave propagation was investigated. Also the fusion conditions at x ≠ 0 layers were clarified by exactly solving hydrodynamic equations for plasma block ignition. In this paper, the applied physical mechanisms are determined for nonlinear force laser driven plasma blocks, thermonuclear reaction, heat transfer, electro,ion equilibration, stopping power of alpha particles, bremsstrahlung, expansion, density dependence, and fluid dynamics. New ignition conditions may be obtained by using temperature equations, including the density profile that is obtained by the continuity equation and expansion velocity. The density is only a function of x and independent of time. The ignition energy flux density, Et*, for the x ≠ 0 layers is 1.95 × 1012 J/m2. Thus threshold ignition energy in comparison with that at x =0 layers would be reduced to less than 50 percent. 展开更多
关键词 plasma block solid-state fuel ignition expansion
下载PDF
Extreme CPA Laser Pulses for Igniting Nuclear Fusion of Hydrogen with Boron-11 by Non-thermal Pressures for Avoiding Ultrahigh Temperatures 被引量:1
2
作者 Heinrich Hora 《Journal of Energy and Power Engineering》 2020年第5期156-177,共22页
Ten million times more compact energy than from burning carbon can be obtained from nuclear fusion reactions corresponding to equilibrium temperature reactions in the range above 100 million degrees.Following the ener... Ten million times more compact energy than from burning carbon can be obtained from nuclear fusion reactions corresponding to equilibrium temperature reactions in the range above 100 million degrees.Following the energy gain in stars,one has to gain nuclear energy from slamming very light nuclei where however the extremely high temperatures above 100 million degrees are needed for the sufficient pressures at thermal equilibrium ignition.A radically new option works with non-thermal pressures of picosecond laser pulses at ultrahigh optical powers by nonlinear forces of ponderomotion.The nuclear fusion of hydrogen with the isotope 11 of boron produces primarily harmless helium and has no problems with dangerous radioactive waste and excludes any catastrophic melt-down as fission reactors,it has the potential to be of low costs and can supply the Earth for more than 10,000 years with electricity. 展开更多
关键词 Laser boron fusion non-thermal ignition plasma block acceleration CPA pulses
下载PDF
Avalanche boron fusion by laser picosecond block ignition with magnetic trapping for clean and economic reactor 被引量:2
3
作者 H.Hora G.Korn +10 位作者 S.Eliezer N.Nissim P.Lalousis L.Giuffrida D.Margarone A.Picciotto G.H.Miley S.Moustaizis J.-M.Martinez-Val C.P.J.Barty G.J.Kirchhoff 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2016年第4期1-9,共9页
Measured highly elevated gains of proton–boron(HB11) fusion(Picciotto et al., Phys. Rev. X 4, 031030(2014))confirmed the exceptional avalanche reaction process(Lalousis et al., Laser Part. Beams 32, 409(2014); Hora e... Measured highly elevated gains of proton–boron(HB11) fusion(Picciotto et al., Phys. Rev. X 4, 031030(2014))confirmed the exceptional avalanche reaction process(Lalousis et al., Laser Part. Beams 32, 409(2014); Hora et al.,Laser Part. Beams 33, 607(2015)) for the combination of the non-thermal block ignition using ultrahigh intensity laser pulses of picoseconds duration. The ultrahigh acceleration above 10^(20) cm s^(-2)for plasma blocks was theoretically and numerically predicted since 1978(Hora, Physics of Laser Driven Plasmas(Wiley, 1981), pp. 178 and 179) and measured(Sauerbrey, Phys. Plasmas 3, 4712(1996)) in exact agreement(Hora et al., Phys. Plasmas 14, 072701(2007)) when the dominating force was overcoming thermal processes. This is based on Maxwell's stress tensor by the dielectric properties of plasma leading to the nonlinear(ponderomotive) force f_(NL)resulting in ultra-fast expanding plasma blocks by a dielectric explosion. Combining this with measured ultrahigh magnetic fields and the avalanche process opens an option for an environmentally absolute clean and economic boron fusion power reactor. This is supported also by other experiments with very high HB11 reactions under different conditions(Labaune et al., Nature Commun.4, 2506(2013)). 展开更多
关键词 boron fusion energy dielectric nonlinear force explosion economic reactor environmentally clean energy picosecond-non-thermal plasma block ignition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部