Traditional methods focus on the ultimate bending moment of glulam beams and the fracture failure of materials with defects,which usually depends on empirical parameters.There is no systematic theoretical method to pr...Traditional methods focus on the ultimate bending moment of glulam beams and the fracture failure of materials with defects,which usually depends on empirical parameters.There is no systematic theoretical method to predict the stiffness and shear distribution of glulam beams in elastic-plastic stage,and consequently,the failure of such glulam beams cannot be predicted effectively.To address these issues,an analytical method considering material nonlinearity was proposed for glulam beams,and the calculating equations of deflection and shear stress distribution for different failure modes were established.The proposed method was verified by experiments and numerical models under the corresponding conditions.Results showed that the theoretical calculations were in good agreement with experimental and numerical results,indicating that the equations proposed in this paper were reliable and accurate for such glulam beams with wood material in the elastic-plastic stage ignoring the influence of mechanic properties in radial and tangential directions of wood.Furthermore,the experimental results reported by the previous studies indicated that the method was applicable and could be used as a theoretical reference for predicting the failure of glulam beams.展开更多
On the basis of elastic-plastic damage model of cement consolidated soil,the authors took organic contents into reasonable damage variable evolution equation in order to seek relation between the organic contents and ...On the basis of elastic-plastic damage model of cement consolidated soil,the authors took organic contents into reasonable damage variable evolution equation in order to seek relation between the organic contents and parameters in the equation,and established the elastic-plastic damage model of cement consolidated soil considering organic contents.The results show that the parameters change correspondingly with difference of the organic contents.The higher the organic contents are,the less the valves of the parameters such as elastic modulus(E),material parameters(K,n) and damage evolution parameter(ε) become,but the larger strain damage threshold value(εd) of the sample is.Meanwhile,the calculation results obtained from established model are compared with the test data in the condition of common indoors test,which is testified with reliability.展开更多
A new elastic-plastic impact-contact model is proposed in this paper. By adopting the principle of minimum acceleration for elastic-plastic continue at finite deformation, and with the aid of finite difference method,...A new elastic-plastic impact-contact model is proposed in this paper. By adopting the principle of minimum acceleration for elastic-plastic continue at finite deformation, and with the aid of finite difference method, the proposed model is applied in the problem of dynamic response of a clamped thin circular plate subjected to a projectile impact centrally. The impact force history and response characteristics of the target plate is studied in detail. The theoretical predictions of the impact force and plate deflection are in good agreements with those of LDA experimental data. Linear expressions of the maximum impact force/transverse deflection versus impact velocity are given on the basis of the theoretical results.展开更多
A Harten-Lax-van Leer-contact (HLLC) approximate Riemann solver is built with elastic waves (HLLCE) for one-dimensional elastic-plastic flows with a hypo- elastic constitutive model and the von Mises' yielding cr...A Harten-Lax-van Leer-contact (HLLC) approximate Riemann solver is built with elastic waves (HLLCE) for one-dimensional elastic-plastic flows with a hypo- elastic constitutive model and the von Mises' yielding criterion. Based on the HLLCE, a third-order cell-centered Lagrangian scheme is built for one-dimensional elastic-plastic problems. A number of numerical experiments are carried out. The numerical results show that the proposed third-order scheme achieves the desired order of accuracy. The third-order scheme is used to the numerical solution of the problems with elastic shock waves and elastic rarefaction waves. The numerical results are compared with a reference solution and the results obtained by other authors. The comparison shows that the pre- sented high-order scheme is convergent, stable, and essentially non-oscillatory. Moreover, the HLLCE is more efficient than the two-rarefaction Riemann solver with elastic waves (TRRSE)展开更多
Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. ...Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. To analyze the elastic-plastic response of a short-leg shear wall structure during an earthquake, this study modified the multiple-vertical-rod element model of the shear wall, considered the shear lag effect and proposed a multiple-vertical-rod element coupling beam model with a new local stiffness domain. Based on the principle of minimum potential energy and the variational principle, the stiffness matrixes of a short-leg shear wall and a coupling beam are derived in this study. Furthermore, the bending shear correlation for the analysis of different parameters to describe the structure, such as the beam height to span ratio, short-leg shear wall height to thickness ratio, and steel ratio are introduced. The results show that the height to span ratio directly affects the structural integrity; and the short-leg shear wall height to thickness ratio should be limited to a range of approximately 6.0 to 7.0. The design of short-leg shear walls should be in accordance with the "strong wall and weak beam" principle.展开更多
In this paper, a systematic approach is proposed to obtain the macroscopic elastic-plastic constitutive relation of particle reinforced composites (PRC). The strain energy density of PRC is analyzed based on the cell ...In this paper, a systematic approach is proposed to obtain the macroscopic elastic-plastic constitutive relation of particle reinforced composites (PRC). The strain energy density of PRC is analyzed based on the cell model, and the analytical formula for the macro-constitutive relation of PRC is obtained. The strength effects of volume fraction of the particle and the strain hardening exponent of matrix material on the macro-constitutive relation are investigated, the relation curve of strain versus stress of PRC is calculated in detail. The present results are consistent with the results given in the existing references.展开更多
A elastic-plastic fatigue crack growth(FCG)finite element model was developed for predicting crack growth rate under cyclic load.The propagation criterion for this model was established based on plastically dissipated...A elastic-plastic fatigue crack growth(FCG)finite element model was developed for predicting crack growth rate under cyclic load.The propagation criterion for this model was established based on plastically dissipated energy.The crack growth simulation under cyclic computation was implemented through the ABAQUS scripting interface.The predictions of this model are in good agreement with the results of crack propagation experiment of compact tension specimen made of 304 stainless steel.Based on the proposed model,the single peak overload retardation effect of elastic-plastic fatigue crack was analyzed.The results shows that the single peak overload will reduce the accumulation rate of plastic energy dissipation of elements at crack tip plastic zone,so that crack growth will be arrested.The crack growth rate will not recover until the crack tip exceed the affected region.Meanwhile,the crack growth rate is mainly determined by the amplitude rather than the mean load under the condition of small scale yielding.The proposed model would be helpful for predicting the growth rate of mode I elastic-plastic fatigue crack.展开更多
The elastic-plastic behavior and failure of pipe-on-pipe impact(p-o-p-i)problem is studied through analytical model and numerical simulation in this paper.The impact of a whipping pipe with one end hinged and the othe...The elastic-plastic behavior and failure of pipe-on-pipe impact(p-o-p-i)problem is studied through analytical model and numerical simulation in this paper.The impact of a whipping pipe with one end hinged and the other end free on a simply-supported target pipe at its midpoint is considered.The analytical model based on tubular beam theory is proposed in the study of the deformation and plastic collapse behavior of pipes impacted on different positions and therefore to obtain the various failure modes depending on the material and structural parameters of the pipes.Numerical simulations using the finite element code MSC-Marc are performed and the results are coincident with the theoretical predictions.展开更多
A new method of robust damper design is presented for elastic-plastic multi-degree-of-freedom(MDOF)building structures under multi-level ground motions(GMs).This method realizes a design that is effective for various ...A new method of robust damper design is presented for elastic-plastic multi-degree-of-freedom(MDOF)building structures under multi-level ground motions(GMs).This method realizes a design that is effective for various levels of GMs.The robustness of a design is measured by an incremental dynamic analysis(IDA)curve and an ideal drift response curve(IDRC).The IDRC is a plot of the optimized maximum deformation under a constraint on the total damper quantity vs.the design level of the GMs.The total damper quantity corresponds to the total cost of the added dampers.First,a problem of generation of IDRCs is stated.Then,its solution algorithm,which consists of the sensitivity-based algorithm(SBA)and a local search method,is proposed.In the application of the SBA,the passive added dampers are removed sequentially under the specified-level GMs.On the other hand,the proposed local search method can search the optimal solutions for a constant total damper quantity under GMs’increased levels.In this way,combining these two algorithms enables the comprehensive search of the optimal solutions for various conditions of the status of the GMs and the total damper quantity.The influence of selecting the type of added dampers(oil,hysteretic,and so on)and the selection of the input GMs on the IDRCs are investigated.Finally,a robust optimal design problem is formulated,and a simple local search-based algorithm is proposed.A simple index using the IDRC and the IDA curve of the model is used as the objective function.It is demonstrated that the proposed algorithm works well in spite of its simplicity.展开更多
To study the damage evolution of the metal plate in elastic and plastic deformation stages, an improved micropolar peridynamic model is proposed to simulate the deformation process and damage evolution of metal materi...To study the damage evolution of the metal plate in elastic and plastic deformation stages, an improved micropolar peridynamic model is proposed to simulate the deformation process and damage evolution of metal materials with variable Poisson’s ratios in the elastic-plastic stages. Firstly, both the stretching and bending moments of the bonds between the material points are added to peridynamic pairwise force functions, and the coordinate transformation of the micro-beam made up of bonds is deduced. Therefore, the numerical calculation implementation of the improved micropolar peridynamic model is obtained. Then, the strain values are obtained by solving the difference equation based on the displacement values of material points, and the stress values can be calculated according to generalized Hook’s law. The elastic and plastic deformation stages can be estimated based on the von Mises yield criterion, and different constitutive equations are adopted to simulate the damage evolution. Finally, the proposed micropolar peridynamic model is applied to simulate the damage evolution of a metal plate with a hole under velocity boundary conditions, and the effectiveness of the model is verified through experiments. In the experiments, the displacement and strain distributions in the stretching process are analyzed by the digital image correlation(DIC) method. By comparing the results, the proposed model is more accurate than the bond-based peridynamic model and the error of the proposed model is 7.2% lower than that of the bond-based peridynamic model. By loading different velocity boundary conditions, the relationship between the loads and damage evolution is studied.展开更多
A multiscale crystal plasticity model accounting for temperature-dependent mechanical behaviors without introducing a larger number of unknown parameters was developed.The model was implemented in elastic-plastic self...A multiscale crystal plasticity model accounting for temperature-dependent mechanical behaviors without introducing a larger number of unknown parameters was developed.The model was implemented in elastic-plastic self-consistent(EPSC)and crystal plasticity finite element(CPFE)frameworks for grain-scale simulations.A computationally efficient EPSC model was first employed to estimate the critical resolved shear stress and hardening parameters of the slip and twin systems available in a hexagonal close-packed magnesium alloy,ZEK100.The constitutive parameters were thereafter refined using the CPFE.The crystal plasticity frameworks incorporated with the temperature-dependent constitutive model were used to predict stress–strain curves in macroscale and lattice strains in microscale at different testing temperatures up to 200℃.In particular,the predictions by the crystal plasticity models were compared with the measured lattice strain data at the elevated temperatures by in situ high-energy X-ray diffraction,for the first time.The comparison in the multiscale improved the fidelity of the developed temperature-dependent constitutive model and validated the assumption with regard to the temperature dependency of available slip and twin systems in the magnesium alloy.Finally,this work provides a time-efficient and precise modeling scheme for magnesium alloys at elevated temperatures.展开更多
Although numerical simulation tools are now very powerful,the development of analytical models is very important for the prediction of the mechanical behaviour of line contact structures for deeply understanding conta...Although numerical simulation tools are now very powerful,the development of analytical models is very important for the prediction of the mechanical behaviour of line contact structures for deeply understanding contact problems and engineering applications.For the line contact structures widely used in the engineering field,few analytical models are available for predicting the mechanical behaviour when the structures deform plastically,as the classic Hertz’s theory would be invalid.Thus,the present study proposed an elastic-plastic model for line contact structures based on the understanding of the yield mechanism.A mathematical expression describing the global relationship between load history and contact width evolution of line contact structures was obtained.The proposed model was verified through an actual line contact test and a corresponding numerical simulation.The results confirmed that this model can be used to accurately predict the elastic-plastic mechanical behaviour of a line contact structure.展开更多
Elastic-plastic steel damper(EPSD) is a new device controlling seismic responses.The mechanical principle of EPSD was presented and a comparison was conducted between the theoretical formulas and finite element(FE) si...Elastic-plastic steel damper(EPSD) is a new device controlling seismic responses.The mechanical principle of EPSD was presented and a comparison was conducted between the theoretical formulas and finite element(FE) simulation of damper units.The verified force-displacement hysteretic curve of the damper system was obtained with reference to tests.The Nanjing Jiangxinzhou Bridge(NJB) was subsequently taken as the case to investigate the seismic response control effect of EPSDs on single-tower self-anchored suspension bridges.A 3-dimensional FE model of the bridge was established in ANSYS and the dynamic and static analyses of the bridge were conducted,the control effect of EPSDs under different seismic waves was further investigated through nonlinear time-history analysis based on the validated model.Results showed that both the simplified theoretical and FE simulation methods can preferable reflect the mechanical performance of EPSD,and that seismic responses of NJB with EPSDs are better than those with elastic connection device or fluid viscous damper.However,the control effect of EPSDs is influenced by seismic wave characteristics.展开更多
Phase transformations in steels play a major role on the generation of residual stresses and distortions during thermal processes such as welding and heat treatments. In this paper, we focus on the influence of phase ...Phase transformations in steels play a major role on the generation of residual stresses and distortions during thermal processes such as welding and heat treatments. In this paper, we focus on the influence of phase transformations on the plastic behaviour of a low-alloy steel. It is now well known that the plastic strain rate can then be decomposed as the sum of two terms. The first one corresponds to classical plasticity while the second one is due to the evolution of the transformation and is usually referred to as corresponding to transformation induced plasticity. A theoretical approach of the problem has been achieved ([1][2][3]] and a macroscopic model has been proposed in the case of ideal-plastic phases. The theoretical approach has been assessed and completed using micromechanical numerical simulations but these were based on rather coarse 3D meshes due to limited computer capabilities in the 80’s. This paper presents new finite element micromechanical calculations using refined meshes to analyse the classical plastic behaviour and transformation induced plasticity. The results of the computations are discussed and compared with the calculations initially performed. Finally improvements of the macroscopic model are proposed.展开更多
The stability and safety are very important issues for the dam structure which are built in seismic regions. The dam body consists of soil materials that behave nonlinearly modelled with finite elements. The numerical...The stability and safety are very important issues for the dam structure which are built in seismic regions. The dam body consists of soil materials that behave nonlinearly modelled with finite elements. The numerical investigation employs a fully nonlinear finite element analysis considering linear and elastic-plastic constitutive model to describe the material properties of the soil. In this paper, seismic analysis of an earthen dam is carried out using Geo-Studio software based on finite element method. Initially, the in-situ stress state analysis has been done before the earthquake established, and then its results are used in the seismic analysis as a parent analysis. A complete parametric study is carried out to identify the effects of input motion characteristics, soil behaviour and strength of the shell and core materials on the dynamic response of earthen dams. The real earthquake record is used as input motions. The analysis gives the overall pattern of the dam behaviour in terms of contours of displacements and stresses.展开更多
A unified damage and fracture model,the combinatory work density model,which is suitable for ei- ther non-cracked body or cracked body has been suggested.In the present paper,the deformation and fracture of the two ki...A unified damage and fracture model,the combinatory work density model,which is suitable for ei- ther non-cracked body or cracked body has been suggested.In the present paper,the deformation and fracture of the two kinds of tensile spceimen and TPB specimen made of 40Cr steel have been simulated by using the new mod- el together with the large èlastic-plastic deformation finite element method.The results give a good picture of the whole deformation and fracture processes of the specimens in experiments;especially,the results on the TPB specimen can be used to obtain the relationship between load and displacement at the loading point P-Δ,and between crack ex- tension and displacement at the loading point Δα-Δ,the resistance curve J_R-Δa and the fracture toughness J_(IC).All the results are in remarkable agreement with those obtained by experiments.Therefore the model suggested here can be used to simulate crack initiation and propagation in non-cracked body and fracture initiation and crack stable propa- gation in cracked body.展开更多
We have studied the influence of hot-carrier degradation effects on the drain current of a gate-stack double-gate (GS DG) MOSFET device. Our analysis is carried out by using an accurate continuous current-voltage (...We have studied the influence of hot-carrier degradation effects on the drain current of a gate-stack double-gate (GS DG) MOSFET device. Our analysis is carried out by using an accurate continuous current-voltage (I-V) model, derived based on both Poisson's and continuity equations without the need of charge-sheet approxi- mation. The developed model offers the possibility to describe the entire range of different regions (subthreshold, linear and saturation) through a unique continuous expression. Therefore, the proposed approach can bring consid- erable enhancement at the level of multi-gate compact modeling including hot-carrier degradation effects.展开更多
A new model,called object model,for the simulation of cold roll-forming of tubes is presented.The model inherits the advantages of old models and is the embodiment of forming process that the strip is rolled step by s...A new model,called object model,for the simulation of cold roll-forming of tubes is presented.The model inherits the advantages of old models and is the embodiment of forming process that the strip is rolled step by step from feed rollers to last rolling pass.The elastic-plastic large deformation spline finite strip method based on updated Lagrangian method has been developed by improving the stiffness and transition matrix.Combined theory formulas and new analytical model,the forming process of a tube has been simulated successfully as an example.The analytical results are submitted and indicate that the proposed simulation method and new model are applicable.展开更多
A two-dimensional axisymmetric finite element model for stress distribution of billet in electromagnetic soft-contact continuous casting mould was established by a two-way coupled method.The contact state between soli...A two-dimensional axisymmetric finite element model for stress distribution of billet in electromagnetic soft-contact continuous casting mould was established by a two-way coupled method.The contact state between solidified shell and mould was described to simulate the thermal-mechanical behaviors in the soft-contact mould.And the effects of frequencies and currents on stress distribution of billet had been discussed and analyzed.The results show that the equivalent stress of initial solidification shell both at its outer and inner surface decreases but at the bottom the equivalent stress of two sides of shell both increases when the current intensity is 1600 A,and the frequency is 20 kHz,compared with the status of conventional continuous casting.展开更多
基金support from High-Level Natural ScienceFoundation of Hainan Province of China (Grant No. 2019RC055)National Natural Science Foundation ofChina (Grant No. 51808176) and the Project Funded by the National First-Class Disciplines (PNFD).
文摘Traditional methods focus on the ultimate bending moment of glulam beams and the fracture failure of materials with defects,which usually depends on empirical parameters.There is no systematic theoretical method to predict the stiffness and shear distribution of glulam beams in elastic-plastic stage,and consequently,the failure of such glulam beams cannot be predicted effectively.To address these issues,an analytical method considering material nonlinearity was proposed for glulam beams,and the calculating equations of deflection and shear stress distribution for different failure modes were established.The proposed method was verified by experiments and numerical models under the corresponding conditions.Results showed that the theoretical calculations were in good agreement with experimental and numerical results,indicating that the equations proposed in this paper were reliable and accurate for such glulam beams with wood material in the elastic-plastic stage ignoring the influence of mechanic properties in radial and tangential directions of wood.Furthermore,the experimental results reported by the previous studies indicated that the method was applicable and could be used as a theoretical reference for predicting the failure of glulam beams.
基金Supported by Projects of National Natural Science Foundation of China(Nos.40372122, 40672180)Education Reform and Development Fund of Jilin University (No.498020200029)
文摘On the basis of elastic-plastic damage model of cement consolidated soil,the authors took organic contents into reasonable damage variable evolution equation in order to seek relation between the organic contents and parameters in the equation,and established the elastic-plastic damage model of cement consolidated soil considering organic contents.The results show that the parameters change correspondingly with difference of the organic contents.The higher the organic contents are,the less the valves of the parameters such as elastic modulus(E),material parameters(K,n) and damage evolution parameter(ε) become,but the larger strain damage threshold value(εd) of the sample is.Meanwhile,the calculation results obtained from established model are compared with the test data in the condition of common indoors test,which is testified with reliability.
基金The project supported by the National Natural Science Foundation of China(10532020)
文摘A new elastic-plastic impact-contact model is proposed in this paper. By adopting the principle of minimum acceleration for elastic-plastic continue at finite deformation, and with the aid of finite difference method, the proposed model is applied in the problem of dynamic response of a clamped thin circular plate subjected to a projectile impact centrally. The impact force history and response characteristics of the target plate is studied in detail. The theoretical predictions of the impact force and plate deflection are in good agreements with those of LDA experimental data. Linear expressions of the maximum impact force/transverse deflection versus impact velocity are given on the basis of the theoretical results.
基金Project supported by the National Natural Science Foundation of China(Nos.11172050 and11672047)the Science and Technology Foundation of China Academy of Engineering Physics(No.2013A0202011)
文摘A Harten-Lax-van Leer-contact (HLLC) approximate Riemann solver is built with elastic waves (HLLCE) for one-dimensional elastic-plastic flows with a hypo- elastic constitutive model and the von Mises' yielding criterion. Based on the HLLCE, a third-order cell-centered Lagrangian scheme is built for one-dimensional elastic-plastic problems. A number of numerical experiments are carried out. The numerical results show that the proposed third-order scheme achieves the desired order of accuracy. The third-order scheme is used to the numerical solution of the problems with elastic shock waves and elastic rarefaction waves. The numerical results are compared with a reference solution and the results obtained by other authors. The comparison shows that the pre- sented high-order scheme is convergent, stable, and essentially non-oscillatory. Moreover, the HLLCE is more efficient than the two-rarefaction Riemann solver with elastic waves (TRRSE)
文摘Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. To analyze the elastic-plastic response of a short-leg shear wall structure during an earthquake, this study modified the multiple-vertical-rod element model of the shear wall, considered the shear lag effect and proposed a multiple-vertical-rod element coupling beam model with a new local stiffness domain. Based on the principle of minimum potential energy and the variational principle, the stiffness matrixes of a short-leg shear wall and a coupling beam are derived in this study. Furthermore, the bending shear correlation for the analysis of different parameters to describe the structure, such as the beam height to span ratio, short-leg shear wall height to thickness ratio, and steel ratio are introduced. The results show that the height to span ratio directly affects the structural integrity; and the short-leg shear wall height to thickness ratio should be limited to a range of approximately 6.0 to 7.0. The design of short-leg shear walls should be in accordance with the "strong wall and weak beam" principle.
基金The project supported by the National Natural Science Foundation of China (No. 19704100) National Science Foundation of Chinese Academy of Sciences (Project KJ951-1-20)
文摘In this paper, a systematic approach is proposed to obtain the macroscopic elastic-plastic constitutive relation of particle reinforced composites (PRC). The strain energy density of PRC is analyzed based on the cell model, and the analytical formula for the macro-constitutive relation of PRC is obtained. The strength effects of volume fraction of the particle and the strain hardening exponent of matrix material on the macro-constitutive relation are investigated, the relation curve of strain versus stress of PRC is calculated in detail. The present results are consistent with the results given in the existing references.
基金Project No.51575076 supported by the National Natural Science Foundation of China.
文摘A elastic-plastic fatigue crack growth(FCG)finite element model was developed for predicting crack growth rate under cyclic load.The propagation criterion for this model was established based on plastically dissipated energy.The crack growth simulation under cyclic computation was implemented through the ABAQUS scripting interface.The predictions of this model are in good agreement with the results of crack propagation experiment of compact tension specimen made of 304 stainless steel.Based on the proposed model,the single peak overload retardation effect of elastic-plastic fatigue crack was analyzed.The results shows that the single peak overload will reduce the accumulation rate of plastic energy dissipation of elements at crack tip plastic zone,so that crack growth will be arrested.The crack growth rate will not recover until the crack tip exceed the affected region.Meanwhile,the crack growth rate is mainly determined by the amplitude rather than the mean load under the condition of small scale yielding.The proposed model would be helpful for predicting the growth rate of mode I elastic-plastic fatigue crack.
基金National Natural Science Foundation of China(No.11032001)
文摘The elastic-plastic behavior and failure of pipe-on-pipe impact(p-o-p-i)problem is studied through analytical model and numerical simulation in this paper.The impact of a whipping pipe with one end hinged and the other end free on a simply-supported target pipe at its midpoint is considered.The analytical model based on tubular beam theory is proposed in the study of the deformation and plastic collapse behavior of pipes impacted on different positions and therefore to obtain the various failure modes depending on the material and structural parameters of the pipes.Numerical simulations using the finite element code MSC-Marc are performed and the results are coincident with the theoretical predictions.
基金Part of the present work is supported by the Grant-in-Aid for Scientific Research(KAKENHI)of the Japan Society for the Promotion of Science(Nos.18H01584,JP20J20811)This support is greatly appreciated.
文摘A new method of robust damper design is presented for elastic-plastic multi-degree-of-freedom(MDOF)building structures under multi-level ground motions(GMs).This method realizes a design that is effective for various levels of GMs.The robustness of a design is measured by an incremental dynamic analysis(IDA)curve and an ideal drift response curve(IDRC).The IDRC is a plot of the optimized maximum deformation under a constraint on the total damper quantity vs.the design level of the GMs.The total damper quantity corresponds to the total cost of the added dampers.First,a problem of generation of IDRCs is stated.Then,its solution algorithm,which consists of the sensitivity-based algorithm(SBA)and a local search method,is proposed.In the application of the SBA,the passive added dampers are removed sequentially under the specified-level GMs.On the other hand,the proposed local search method can search the optimal solutions for a constant total damper quantity under GMs’increased levels.In this way,combining these two algorithms enables the comprehensive search of the optimal solutions for various conditions of the status of the GMs and the total damper quantity.The influence of selecting the type of added dampers(oil,hysteretic,and so on)and the selection of the input GMs on the IDRCs are investigated.Finally,a robust optimal design problem is formulated,and a simple local search-based algorithm is proposed.A simple index using the IDRC and the IDA curve of the model is used as the objective function.It is demonstrated that the proposed algorithm works well in spite of its simplicity.
基金The National Natural Science Foundation of China(No.51575101)
文摘To study the damage evolution of the metal plate in elastic and plastic deformation stages, an improved micropolar peridynamic model is proposed to simulate the deformation process and damage evolution of metal materials with variable Poisson’s ratios in the elastic-plastic stages. Firstly, both the stretching and bending moments of the bonds between the material points are added to peridynamic pairwise force functions, and the coordinate transformation of the micro-beam made up of bonds is deduced. Therefore, the numerical calculation implementation of the improved micropolar peridynamic model is obtained. Then, the strain values are obtained by solving the difference equation based on the displacement values of material points, and the stress values can be calculated according to generalized Hook’s law. The elastic and plastic deformation stages can be estimated based on the von Mises yield criterion, and different constitutive equations are adopted to simulate the damage evolution. Finally, the proposed micropolar peridynamic model is applied to simulate the damage evolution of a metal plate with a hole under velocity boundary conditions, and the effectiveness of the model is verified through experiments. In the experiments, the displacement and strain distributions in the stretching process are analyzed by the digital image correlation(DIC) method. By comparing the results, the proposed model is more accurate than the bond-based peridynamic model and the error of the proposed model is 7.2% lower than that of the bond-based peridynamic model. By loading different velocity boundary conditions, the relationship between the loads and damage evolution is studied.
基金the supports by the Fundamental Research Program of the Korea Institute of Materials Science(KIMS,PNK7760)。
文摘A multiscale crystal plasticity model accounting for temperature-dependent mechanical behaviors without introducing a larger number of unknown parameters was developed.The model was implemented in elastic-plastic self-consistent(EPSC)and crystal plasticity finite element(CPFE)frameworks for grain-scale simulations.A computationally efficient EPSC model was first employed to estimate the critical resolved shear stress and hardening parameters of the slip and twin systems available in a hexagonal close-packed magnesium alloy,ZEK100.The constitutive parameters were thereafter refined using the CPFE.The crystal plasticity frameworks incorporated with the temperature-dependent constitutive model were used to predict stress–strain curves in macroscale and lattice strains in microscale at different testing temperatures up to 200℃.In particular,the predictions by the crystal plasticity models were compared with the measured lattice strain data at the elevated temperatures by in situ high-energy X-ray diffraction,for the first time.The comparison in the multiscale improved the fidelity of the developed temperature-dependent constitutive model and validated the assumption with regard to the temperature dependency of available slip and twin systems in the magnesium alloy.Finally,this work provides a time-efficient and precise modeling scheme for magnesium alloys at elevated temperatures.
基金supported by the National Natural Science Foundation of China(Grant Nos.11602022,and 11727801)the opening projects from the State Key Laboratory of Explosion Science and Technology(Grant No.KFJJ16-05M)the State Key Laboratory of Earthquake Dynamics(Grant No.LED2016B02)
文摘Although numerical simulation tools are now very powerful,the development of analytical models is very important for the prediction of the mechanical behaviour of line contact structures for deeply understanding contact problems and engineering applications.For the line contact structures widely used in the engineering field,few analytical models are available for predicting the mechanical behaviour when the structures deform plastically,as the classic Hertz’s theory would be invalid.Thus,the present study proposed an elastic-plastic model for line contact structures based on the understanding of the yield mechanism.A mathematical expression describing the global relationship between load history and contact width evolution of line contact structures was obtained.The proposed model was verified through an actual line contact test and a corresponding numerical simulation.The results confirmed that this model can be used to accurately predict the elastic-plastic mechanical behaviour of a line contact structure.
基金supported by the National Natural Science Foundation of China (Grant No. 50908046)the Teaching & Scientific Research Fund for Excellent Young Teachers of Southeast University,the Basic Scientific &Research Fund of Southeast University (Grant Nos. 3205001101,Seucx201106)the Priority Academic Program Development Foundation of Jiangsu Higher Education Institutions are gratefully acknowledged
文摘Elastic-plastic steel damper(EPSD) is a new device controlling seismic responses.The mechanical principle of EPSD was presented and a comparison was conducted between the theoretical formulas and finite element(FE) simulation of damper units.The verified force-displacement hysteretic curve of the damper system was obtained with reference to tests.The Nanjing Jiangxinzhou Bridge(NJB) was subsequently taken as the case to investigate the seismic response control effect of EPSDs on single-tower self-anchored suspension bridges.A 3-dimensional FE model of the bridge was established in ANSYS and the dynamic and static analyses of the bridge were conducted,the control effect of EPSDs under different seismic waves was further investigated through nonlinear time-history analysis based on the validated model.Results showed that both the simplified theoretical and FE simulation methods can preferable reflect the mechanical performance of EPSD,and that seismic responses of NJB with EPSDs are better than those with elastic connection device or fluid viscous damper.However,the control effect of EPSDs is influenced by seismic wave characteristics.
文摘Phase transformations in steels play a major role on the generation of residual stresses and distortions during thermal processes such as welding and heat treatments. In this paper, we focus on the influence of phase transformations on the plastic behaviour of a low-alloy steel. It is now well known that the plastic strain rate can then be decomposed as the sum of two terms. The first one corresponds to classical plasticity while the second one is due to the evolution of the transformation and is usually referred to as corresponding to transformation induced plasticity. A theoretical approach of the problem has been achieved ([1][2][3]] and a macroscopic model has been proposed in the case of ideal-plastic phases. The theoretical approach has been assessed and completed using micromechanical numerical simulations but these were based on rather coarse 3D meshes due to limited computer capabilities in the 80’s. This paper presents new finite element micromechanical calculations using refined meshes to analyse the classical plastic behaviour and transformation induced plasticity. The results of the computations are discussed and compared with the calculations initially performed. Finally improvements of the macroscopic model are proposed.
文摘The stability and safety are very important issues for the dam structure which are built in seismic regions. The dam body consists of soil materials that behave nonlinearly modelled with finite elements. The numerical investigation employs a fully nonlinear finite element analysis considering linear and elastic-plastic constitutive model to describe the material properties of the soil. In this paper, seismic analysis of an earthen dam is carried out using Geo-Studio software based on finite element method. Initially, the in-situ stress state analysis has been done before the earthquake established, and then its results are used in the seismic analysis as a parent analysis. A complete parametric study is carried out to identify the effects of input motion characteristics, soil behaviour and strength of the shell and core materials on the dynamic response of earthen dams. The real earthquake record is used as input motions. The analysis gives the overall pattern of the dam behaviour in terms of contours of displacements and stresses.
基金The project supported by National Natural Science Foundation of China
文摘A unified damage and fracture model,the combinatory work density model,which is suitable for ei- ther non-cracked body or cracked body has been suggested.In the present paper,the deformation and fracture of the two kinds of tensile spceimen and TPB specimen made of 40Cr steel have been simulated by using the new mod- el together with the large èlastic-plastic deformation finite element method.The results give a good picture of the whole deformation and fracture processes of the specimens in experiments;especially,the results on the TPB specimen can be used to obtain the relationship between load and displacement at the loading point P-Δ,and between crack ex- tension and displacement at the loading point Δα-Δ,the resistance curve J_R-Δa and the fracture toughness J_(IC).All the results are in remarkable agreement with those obtained by experiments.Therefore the model suggested here can be used to simulate crack initiation and propagation in non-cracked body and fracture initiation and crack stable propa- gation in cracked body.
文摘We have studied the influence of hot-carrier degradation effects on the drain current of a gate-stack double-gate (GS DG) MOSFET device. Our analysis is carried out by using an accurate continuous current-voltage (I-V) model, derived based on both Poisson's and continuity equations without the need of charge-sheet approxi- mation. The developed model offers the possibility to describe the entire range of different regions (subthreshold, linear and saturation) through a unique continuous expression. Therefore, the proposed approach can bring consid- erable enhancement at the level of multi-gate compact modeling including hot-carrier degradation effects.
基金the National Natural Science Foundation of China (No. 50375135)the Talent Foundation of Beijing Jiaotong University (No. 2003RC059)
文摘A new model,called object model,for the simulation of cold roll-forming of tubes is presented.The model inherits the advantages of old models and is the embodiment of forming process that the strip is rolled step by step from feed rollers to last rolling pass.The elastic-plastic large deformation spline finite strip method based on updated Lagrangian method has been developed by improving the stiffness and transition matrix.Combined theory formulas and new analytical model,the forming process of a tube has been simulated successfully as an example.The analytical results are submitted and indicate that the proposed simulation method and new model are applicable.
基金Item Sponsored by National Natural Science Foundation of China[No.50834009]Key Grant Project of China Ministry of Education (No.311014)
文摘A two-dimensional axisymmetric finite element model for stress distribution of billet in electromagnetic soft-contact continuous casting mould was established by a two-way coupled method.The contact state between solidified shell and mould was described to simulate the thermal-mechanical behaviors in the soft-contact mould.And the effects of frequencies and currents on stress distribution of billet had been discussed and analyzed.The results show that the equivalent stress of initial solidification shell both at its outer and inner surface decreases but at the bottom the equivalent stress of two sides of shell both increases when the current intensity is 1600 A,and the frequency is 20 kHz,compared with the status of conventional continuous casting.