期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Exponential change of measure for general piecewise deterministic Markov processes 被引量:1
1
作者 Zhaoyang Liu Yuying Liu Guoxin Liu 《Science China Mathematics》 SCIE CSCD 2019年第4期719-734,共16页
We consider a general piecewise deterministic Markov process(PDMP) X = {X_t}_(t≥0) with a measure-valued generator A, for which the conditional distribution function of the inter-occurrence time is not necessarily ab... We consider a general piecewise deterministic Markov process(PDMP) X = {X_t}_(t≥0) with a measure-valued generator A, for which the conditional distribution function of the inter-occurrence time is not necessarily absolutely continuous. A general form of the exponential martingales that are associated with X is given by■By considering this exponential martingale to be a likelihood-ratio process, we define a new probability measure and show that the process X is still a general PDMP under the new probability measure. We additionally find the new measure-valued generator and its domain. To illustrate our results, we investigate the continuous-time compound binomial model. 展开更多
关键词 EXPONENTIAL change of measure piecewise deterministic markov process measure-valued GENERATOR STIELTJES EXPONENTIAL
原文传递
First Passage Risk Probability Minimization for Piecewise Deterministic Markov Decision Processes 被引量:1
2
作者 Xin WEN Hai-feng HUO Xian-ping GUO 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2022年第3期549-567,共19页
This paper is an attempt to study the minimization problem of the risk probability of piecewise deterministic Markov decision processes(PDMDPs)with unbounded transition rates and Borel spaces.Different from the expect... This paper is an attempt to study the minimization problem of the risk probability of piecewise deterministic Markov decision processes(PDMDPs)with unbounded transition rates and Borel spaces.Different from the expected discounted and average criteria in the existing literature,we consider the risk probability that the total rewards produced by a system do not exceed a prescribed goal during a first passage time to some target set,and aim to find a policy that minimizes the risk probability over the class of all history-dependent policies.Under suitable conditions,we derive the optimality equation(OE)for the probability criterion,prove that the value function of the minimization problem is the unique solution to the OE,and establish the existence ofε(≥0)-optimal policies.Finally,we provide two examples to illustrate our results. 展开更多
关键词 piecewise deterministic markov decision processes risk probability first passage time ε-optimal policy
原文传递
关于逐段决定风险模型的期望折现罚金函数(英文)
3
作者 何敬民 吴荣 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第5期107-112,共6页
主要研究了由逐段决定马尔可夫过程来刻画的风险模型.利用盈余过程的强马尔可夫性,得到了期望折现罚金函数.
关键词 逐段决定马尔可夫过程 破产概率 期望折现罚金函数
下载PDF
逐段决定马尔可夫过程及其在风险中的应用
4
作者 刘国欣 《河北工业大学学报》 CAS 2004年第2期46-51,共6页
着重介绍了PDMP主要理论的研究进展.包括PDMP模型的一般化,PDMP生成元理论的推广,跳机制的状态空间跳测度刻画,微分公式的推广以及新结果在一类风险模型破产理论中的应用等.
关键词 逐段决定马氏过程 生成元 跳测度 鞅技巧 破产概率
下载PDF
索赔到达间隔为几何分布风险模型的破产问题 被引量:1
5
作者 王晓易 刘国欣 杨忠直 《系统工程学报》 CSCD 北大核心 2006年第1期49-54,共6页
讨论了索赔到达间隔时间服从几何分布,索赔额分布为一般离散型分布的一类连续时间风险模型的破产问题,先将风险模型纳入PDMP框架,借助于带离散分量的广义生成元的概念得到相关鞅,再利用测度变换理论得到破产概率的一般表达式,有趣的是... 讨论了索赔到达间隔时间服从几何分布,索赔额分布为一般离散型分布的一类连续时间风险模型的破产问题,先将风险模型纳入PDMP框架,借助于带离散分量的广义生成元的概念得到相关鞅,再利用测度变换理论得到破产概率的一般表达式,有趣的是破产函数不是连续的,而是逐段常值的. 展开更多
关键词 破产概率 逐段决定马尔可夫过程(PDMP) 广义生成元 鞅方法 测度变换
下载PDF
CLASSICAL RISK MODEL WITH THRESHOLD DIVIDEND STRATEGY 被引量:6
6
作者 周明 郭军义 《Acta Mathematica Scientia》 SCIE CSCD 2008年第2期355-362,共8页
In this article, a threshold dividend strategy is used for classical risk model. Under this dividend strategy, certain probability of ruin, which occurs in case of constant barrier strategy, is avoided. Using the stro... In this article, a threshold dividend strategy is used for classical risk model. Under this dividend strategy, certain probability of ruin, which occurs in case of constant barrier strategy, is avoided. Using the strong Markov property of the surplus process and the distribution of the deficit in classical risk model, the survival probability for this model is derived, which is more direct than that in Asmussen(2000, P195, Proposition 1.10). The occupation time of non-dividend of this model is also discussed by means of Martingale method. 展开更多
关键词 Threshold dividend strategy RUIN occupation time piecewise deterministic markov process
下载PDF
The Distribution of Multiple Shot Noise Process and Its Integral
7
作者 Jiwook Jang 《Applied Mathematics》 2014年第3期478-489,共12页
In this paper, we study multiple shot noise process and its integral. We analyse these two processes systematically for their theoretical distributions, based on the piecewise deterministic Markov process theory devel... In this paper, we study multiple shot noise process and its integral. We analyse these two processes systematically for their theoretical distributions, based on the piecewise deterministic Markov process theory developed by Davis [1] and the martingale methodology used by Dassios and Jang [2]. The analytic expressions of the Laplace transforms of these two processes are presented. We also obtain the multivariate probability generating function for the number of jumps, for which we use a multivariate Cox process. To derive these, we assume that the Cox processes jumps, intensity jumps and primary event jumps are independent of each other. Using the Laplace transform of the integral of multiple shot noise process, we obtain the tail of multivariate distributions of the first jump times of the Cox processes, i.e. the multivariate survival functions. Their numerical calculations and other relevant joint distributions’ numerical values are also presented. 展开更多
关键词 MULTIPLE Shot Noise PROCESS and ITS INTEGRAL MULTIVARIATE Cox PROCESS piecewise deterministic markov PROCESS MARTINGALE Methodology MULTIVARIATE Survival Functions
下载PDF
逐段决定Markov过程与半动力系统可加泛函
8
作者 刘国欣 刘兆阳 《中国科学:数学》 CSCD 北大核心 2015年第5期579-592,共14页
本文致力于奠定一般逐段决定Markov过程理论的新的分析基础.本文首次引入半动力系统可加泛函的概念,系统地分析它的性质,特别是得到半动力系统可加泛函对半动力系统轨道的本质依赖特征,给出它的Lebesgue分解式.半动力系统可加泛函这一... 本文致力于奠定一般逐段决定Markov过程理论的新的分析基础.本文首次引入半动力系统可加泛函的概念,系统地分析它的性质,特别是得到半动力系统可加泛函对半动力系统轨道的本质依赖特征,给出它的Lebesgue分解式.半动力系统可加泛函这一概念与逐段决定Markov过程的条件跳时分布和过程的可加泛函等都有着本质的联系. 展开更多
关键词 逐段决定markov过程 半动力系统 半动力系统可加泛函
原文传递
Ruin Probabilities of a Surplus Process Described by PDMPs
9
作者 Jing-min He Rong Wu Hua-yue Zhang 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2008年第1期117-128,共12页
In this paper we mainly study the ruin probability of a surplus process described by a piecewise deterministic Markov process (PDMP). An integro-differential equation for the ruin probability is derived. Under a cer... In this paper we mainly study the ruin probability of a surplus process described by a piecewise deterministic Markov process (PDMP). An integro-differential equation for the ruin probability is derived. Under a certain assumption, it can be transformed into the ruin probability of a risk process whose premiums depend on the current reserves. Using the same argument as that in Asmussen and Nielsen, the ruin probability and its upper bounds are obtained. Finally, we give an analytic expression for ruin probability and its upper bounds when the claim-size is exponentially distributed. 展开更多
关键词 Ruin probability piecewise deterministic markov process integro-differential equation volterra equation
原文传递
On the Gerber-Shiu Discounted Penalty Function for a Surplus Process Described by PDMPs
10
作者 Jing Min HE Rong WU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第5期951-962,共12页
In this paper, we investigate the Gerber-Shiu discounted penalty function for the surplus process described by a piecewise deterministic Markov process (PDMP). We derive an integral equation for the Gerber-Shiu disc... In this paper, we investigate the Gerber-Shiu discounted penalty function for the surplus process described by a piecewise deterministic Markov process (PDMP). We derive an integral equation for the Gerber-Shiu discounted penalty function, and obtain the exact solution when the initial surplus is zero. Dickson formulae are also generalized to the present surplus process. 展开更多
关键词 Gerber-Shiu discounted penalty function piecewise deterministic markov process ulti- mate ruin probability Volterra integral equation
原文传递
盈余过程的马氏性与索赔到达间隔分布为离散型的连续时间风险模型 被引量:2
11
作者 刘国欣 袁莉萍 《应用数学学报》 CSCD 北大核心 2006年第3期518-526,共9页
本文研究广泛的一类连续时间风险模型盈余过程的马氏性,得到了盈余过程成为马氏过程的充分必要条件.首次建立了索赔到达间隔为离散型分布的连续时间风险模型.并对两个基本特例得到了破产概率的准确表达式.
关键词 逐段决定马氏过程 马氏性 鞅技巧 破产概率
原文传递
Ruin Probabilities for a Risk Model with Two Classes of Claims 被引量:1
12
作者 Tong Ling LV Jun Yi GUO Xin ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第9期1749-1760,共12页
In this paper we consider a risk model with two kinds of claims, whose claims number processes are Poisson process and ordinary renewal process respectively. For this model, the surplus process is not Markovian, howev... In this paper we consider a risk model with two kinds of claims, whose claims number processes are Poisson process and ordinary renewal process respectively. For this model, the surplus process is not Markovian, however, it can be Markovianized by introducing a supplementary process, We prove the Markov property of the related vector processes. Because such obtained processes belong to the class of the so-called piecewise-deterministic Markov process, the extended infinitesimal generator is derived, exponential martingale for the risk process is studied. The exponential bound of ruin probability in iafinite time horizon is obtained. 展开更多
关键词 markov vector process piecewise-deterministic markov process (PDMP) infinitesimal generator exponential martingale ruin probability
原文传递
Smoothness of Certain Functions in Two Kinds of Risk Models with a Barrier Dividend Strategy
13
作者 Wei Wang Jing-min He Rong Wu 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2010年第4期661-668,共8页
关键词 piecewise deterministic markov process weak infinitesimal generator barrier strategy
原文传递
On SIR epidemic models with generally distributed infectious periods: Number of secondary cases and probability of infection
14
作者 A. Gomez-Corral M. Lopez-Garcia 《International Journal of Biomathematics》 2017年第2期157-169,共13页
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部