The optimal design and effectiveness of three control systems,tuned viscous mass damper(TVMD),tuned inerter damper(TID)and tuned mass damper(TMD),on mitigating the seismic responses of base isolated structures,were sy...The optimal design and effectiveness of three control systems,tuned viscous mass damper(TVMD),tuned inerter damper(TID)and tuned mass damper(TMD),on mitigating the seismic responses of base isolated structures,were systematically studied.First,the seismic responses of the base isolated structure with each control system under white noise excitation were obtained.Then,the structural parameter optimizations of the TVMD,TID and TMD were conducted by using three different objectives.The results show that the three control systems were all effective in minimizing the root mean square value of seismic responses,including the base shear of the BIS,the absolute acceleration of structural SDOF,and the relative displacement between the base isolation floor and the foundation.Finally,considering the superstructure as a structural MDOF,a series of time history analyses were performed to investigate the effectiveness and activation sensitivity of the three control systems under far field and near fault seismic excitations.The results show that the effectiveness of TID and TMD with optimized parameters on mitigating the seismic responses of base isolated structures increased as the mass ratio increases,and the effectiveness of TID was always better than TMD with the same mass ratio.The TVMD with a lower mass ratio was more efficient in reducing the seismic response than the TID and TMD.Furthermore,the TVMD,when compared with TMD and TID,had better activation sensitivity and a smaller stroke.展开更多
The seismic performance of rubber concrete-layered periodic foundations are significantly influenced by their design,in which the band gaps play a paramount role.Aiming at providing better designs for these foundation...The seismic performance of rubber concrete-layered periodic foundations are significantly influenced by their design,in which the band gaps play a paramount role.Aiming at providing better designs for these foundations,this study first proposes and validates the analytical formulas to approximate the bounds of the first few band gaps.In addition,the mapping relations linking the frequencies of different band gaps are presented.Furthermore,an optimal design method for these foundations is developed,which is validated through an engineering example.It is demonstrated that ensuring the superstructure’s resonance zones are completely covered by the corresponding periodic foundation’s band gaps can achieve satisfactory vibration attenuation effects,which is a good strategy for the design of rubber concrete layered periodic foundations.展开更多
介绍了中国《建筑隔震设计标准》(GB/T 51408—2021)(以下简称《隔标》)和美国Minimum design loads and associated criteria for buildings and other structures(ASCE 7-16)隔震设计的相关要求,并针对基于《建筑抗震设计规范》(GB 50...介绍了中国《建筑隔震设计标准》(GB/T 51408—2021)(以下简称《隔标》)和美国Minimum design loads and associated criteria for buildings and other structures(ASCE 7-16)隔震设计的相关要求,并针对基于《建筑抗震设计规范》(GB 50011—2010)(2016年版)(以下简称《抗规》)设计的某9度区近场隔震结构,进行了两国规范的设计对比。按《抗规》设计的隔震结构,仍然能满足《隔标》的设计要求。ASCE 7-16对于隔震支座考虑了老化和环境、测试、制造等因素引起的性能参数变化,并按隔震支座的上限及下限属性进行了结构设计。基于相同地震概率水准(50年超越概率2%)的设计对比研究表明,ASCE 7-16的等效侧力法计算值高于《隔标》,按ASCE 7-16要求选择的地震波反应谱明显高于《隔标》,其时程分析结果也大于中国规范,对隔震支座的性能要求更高。展开更多
The concepts of seismic isolation and energy dissipation structures emerged in the early 1970s.In China,the first seismic isolation structure was finished in 1993,and the first energy dissipation structure was built a...The concepts of seismic isolation and energy dissipation structures emerged in the early 1970s.In China,the first seismic isolation structure was finished in 1993,and the first energy dissipation structure was built at about the same time.Up to 2007,China had more than 600 seismic isolation and about 100 energy dissipation building structures.In 2008,the huge Wenchuan earthquake hit the southwest of China,which triggered a bloom of new seismic isolation and energy dissipation structures.This paper presents the development history and representative applications of seismic isolation and energy dissipation structures in China,reviews the state-of-the-practice of Chinese design,and discusses the challenges in the future applications.Major findings are as follows:Basic design procedures are becoming standardized after more than ten years of experiences,which mainly involve determination of design earthquake forces,selection of ground motions,modeling and time-history analyses,and performance criteria.Nonlinear time-history analyses using multiple ground motions are the characteristic of the design of seismic isolation and energy dissipation structures.Regulations,standardization and quality control of devices,balance between performance and cost,comparison with real responses,and regular inspection are identified as the issues that should be improved to further promote the application of seismic isolation and energy dissipation structures in China.展开更多
基金National Key Research and Development Program of China under Grant No.2017YFC0703600 and No.2017YFC0703604。
文摘The optimal design and effectiveness of three control systems,tuned viscous mass damper(TVMD),tuned inerter damper(TID)and tuned mass damper(TMD),on mitigating the seismic responses of base isolated structures,were systematically studied.First,the seismic responses of the base isolated structure with each control system under white noise excitation were obtained.Then,the structural parameter optimizations of the TVMD,TID and TMD were conducted by using three different objectives.The results show that the three control systems were all effective in minimizing the root mean square value of seismic responses,including the base shear of the BIS,the absolute acceleration of structural SDOF,and the relative displacement between the base isolation floor and the foundation.Finally,considering the superstructure as a structural MDOF,a series of time history analyses were performed to investigate the effectiveness and activation sensitivity of the three control systems under far field and near fault seismic excitations.The results show that the effectiveness of TID and TMD with optimized parameters on mitigating the seismic responses of base isolated structures increased as the mass ratio increases,and the effectiveness of TID was always better than TMD with the same mass ratio.The TVMD with a lower mass ratio was more efficient in reducing the seismic response than the TID and TMD.Furthermore,the TVMD,when compared with TMD and TID,had better activation sensitivity and a smaller stroke.
基金National Natural Science Foundation of China under Grant Nos.52078395 and 52178301the Open Projects Foundation of the State Key Laboratory for Health and Safety of Bridge Structures under Grant No.BHSKL19-07-GF+1 种基金the Dawn Program of Knowledge Innovation Project from the Bureau of Science and Technology of Wuhan Municipality under Grant No.2022010801020357the Science Research Foundation of Wuhan Institute of Technology under Grant No.K2021030。
文摘The seismic performance of rubber concrete-layered periodic foundations are significantly influenced by their design,in which the band gaps play a paramount role.Aiming at providing better designs for these foundations,this study first proposes and validates the analytical formulas to approximate the bounds of the first few band gaps.In addition,the mapping relations linking the frequencies of different band gaps are presented.Furthermore,an optimal design method for these foundations is developed,which is validated through an engineering example.It is demonstrated that ensuring the superstructure’s resonance zones are completely covered by the corresponding periodic foundation’s band gaps can achieve satisfactory vibration attenuation effects,which is a good strategy for the design of rubber concrete layered periodic foundations.
文摘介绍了中国《建筑隔震设计标准》(GB/T 51408—2021)(以下简称《隔标》)和美国Minimum design loads and associated criteria for buildings and other structures(ASCE 7-16)隔震设计的相关要求,并针对基于《建筑抗震设计规范》(GB 50011—2010)(2016年版)(以下简称《抗规》)设计的某9度区近场隔震结构,进行了两国规范的设计对比。按《抗规》设计的隔震结构,仍然能满足《隔标》的设计要求。ASCE 7-16对于隔震支座考虑了老化和环境、测试、制造等因素引起的性能参数变化,并按隔震支座的上限及下限属性进行了结构设计。基于相同地震概率水准(50年超越概率2%)的设计对比研究表明,ASCE 7-16的等效侧力法计算值高于《隔标》,按ASCE 7-16要求选择的地震波反应谱明显高于《隔标》,其时程分析结果也大于中国规范,对隔震支座的性能要求更高。
基金supported by the National Natural Science Foundation of China (Grant No. 51178250)the Tsinghua University (Grant No.2010z01001)
文摘The concepts of seismic isolation and energy dissipation structures emerged in the early 1970s.In China,the first seismic isolation structure was finished in 1993,and the first energy dissipation structure was built at about the same time.Up to 2007,China had more than 600 seismic isolation and about 100 energy dissipation building structures.In 2008,the huge Wenchuan earthquake hit the southwest of China,which triggered a bloom of new seismic isolation and energy dissipation structures.This paper presents the development history and representative applications of seismic isolation and energy dissipation structures in China,reviews the state-of-the-practice of Chinese design,and discusses the challenges in the future applications.Major findings are as follows:Basic design procedures are becoming standardized after more than ten years of experiences,which mainly involve determination of design earthquake forces,selection of ground motions,modeling and time-history analyses,and performance criteria.Nonlinear time-history analyses using multiple ground motions are the characteristic of the design of seismic isolation and energy dissipation structures.Regulations,standardization and quality control of devices,balance between performance and cost,comparison with real responses,and regular inspection are identified as the issues that should be improved to further promote the application of seismic isolation and energy dissipation structures in China.