Fine-grained silt is widely distributed in the Huanghe River Delta(HRD)in China,and the sedimentary structure is complex,meaning that the clay content in the silt is variable.The piezocone penetration test(CPTu)is the...Fine-grained silt is widely distributed in the Huanghe River Delta(HRD)in China,and the sedimentary structure is complex,meaning that the clay content in the silt is variable.The piezocone penetration test(CPTu)is the most widely approved in situ test method.It can be used to invert soil properties and interpret soil behavior.To analyse the strength properties of surface sediments in the HRD,this paper evaluated the friction angle and its inversion formula through the CPTu penetration test and monotonic simple shear test and other soil unit experiments.The evaluation showed that the empirical formula proposed by Kulhawy and Mayne had better prediction and inversion effect.The HRD silts with clay contents of 9.2%,21.4%and 30.3%were selected as samples for the CPTu variable rate penetration test.The results show as follows.(1)The effects of the clay content on the tip resistance and the pore pressure of silt under different penetration rates were summarized.The tip resistance Q_t is strongly dependent on the clay content of the silt,the B_(q)value of the silt tends to 0 and is not significantly affected by the change of the CPTu penetration rate.(2)Five soil behavior type classification charts and three soil behavior type indexes based on CPTu data were evaluated.The results show that the soil behavior type classification chart based on soil behavior type index ISBT,the Robertson 2010 behavior type classification chart are more suitable for the silty soil in the HRD.展开更多
Comprehensive data from in situ and laboratory tests in residual soil have been presented by Zhang et al.(2023).A number of issues addressed in the paper have been the interest of the discussers,namely the characteris...Comprehensive data from in situ and laboratory tests in residual soil have been presented by Zhang et al.(2023).A number of issues addressed in the paper have been the interest of the discussers,namely the characterisation and behaviour of residual soils,limitation of piezocone testing due to the capacity of the entire system,measurement of shear wave velocity,rate effect of piezocone(CPTU)testing and piezocone testing with dual pore pressure penetrometers.Clarification and complementation of these issues are required with regard to both the execution and interpretation of the tests.展开更多
Piezocone penetration test(CPTu),the preferred in-situ tool for submarine investigation,is significant for soil classification and soil depth profile prediction,which can be used to predict soil types and states.Howev...Piezocone penetration test(CPTu),the preferred in-situ tool for submarine investigation,is significant for soil classification and soil depth profile prediction,which can be used to predict soil types and states.However,the accuracy of these methods needs to be validated for local conditions.To distinguish and evaluate the properties of the shallow surface sediments in Chengdao area of the Yellow River Delta,seabed CPTu tests were carried out at ten stations in this area.Nine soil classification methods based on CPTu data are applied for soil classification.The results of classification are compared with the in-situ sampling to determine whether the method can provide sufficient resolution.The methods presented by Robertson(based on soil behavior type index Ic),Olsen and Mitchell are the more consistent and compatible ones compared with other methods.Considering that silt soils have potential to liquefy under storm tide or other adverse conditions,this paper is able to screen soil classification methods suitable for the Chengdao area and help identify the areas where liquefaction or submarine landslide may occur through CPTu investigation.展开更多
Because of the cementation inherited from the parent rock,weathered granitic soil is usually susceptible to disturbance,which poses considerable challenges for laboratory characterization.The cone penetration test wit...Because of the cementation inherited from the parent rock,weathered granitic soil is usually susceptible to disturbance,which poses considerable challenges for laboratory characterization.The cone penetration test with pore pressure measurements has long been known for its reliability in site investigations and stratigraphic profiling.However,although extensive piezocone test results and experience are available for sedimentary soil,similar advances are yet to be made for weathered granitic soil.Moreover,the experience from sedimentary soil may not be directly applicable to weathered profiles because of the essentially different natures of the two types of geomaterials.This study performs seismic piezocone tests in a weathered granitic profile comprising residual granitic soil,completely weathered granite,and highly weathered granite.Pore pressure is measured at both the cone mid-face and the shoulder,and the effects of penetrometer size and penetration rate are considered.A series of updated soil behavior type charts is proposed to interpret the test results,thereby allowing the effect of weathering to be evaluated.This paper offers an important extension to the sparse data on the in situ responses of weathered materials.展开更多
基金The National Natural Science Foundation of China under contract No.U2006213。
文摘Fine-grained silt is widely distributed in the Huanghe River Delta(HRD)in China,and the sedimentary structure is complex,meaning that the clay content in the silt is variable.The piezocone penetration test(CPTu)is the most widely approved in situ test method.It can be used to invert soil properties and interpret soil behavior.To analyse the strength properties of surface sediments in the HRD,this paper evaluated the friction angle and its inversion formula through the CPTu penetration test and monotonic simple shear test and other soil unit experiments.The evaluation showed that the empirical formula proposed by Kulhawy and Mayne had better prediction and inversion effect.The HRD silts with clay contents of 9.2%,21.4%and 30.3%were selected as samples for the CPTu variable rate penetration test.The results show as follows.(1)The effects of the clay content on the tip resistance and the pore pressure of silt under different penetration rates were summarized.The tip resistance Q_t is strongly dependent on the clay content of the silt,the B_(q)value of the silt tends to 0 and is not significantly affected by the change of the CPTu penetration rate.(2)Five soil behavior type classification charts and three soil behavior type indexes based on CPTu data were evaluated.The results show that the soil behavior type classification chart based on soil behavior type index ISBT,the Robertson 2010 behavior type classification chart are more suitable for the silty soil in the HRD.
文摘Comprehensive data from in situ and laboratory tests in residual soil have been presented by Zhang et al.(2023).A number of issues addressed in the paper have been the interest of the discussers,namely the characterisation and behaviour of residual soils,limitation of piezocone testing due to the capacity of the entire system,measurement of shear wave velocity,rate effect of piezocone(CPTU)testing and piezocone testing with dual pore pressure penetrometers.Clarification and complementation of these issues are required with regard to both the execution and interpretation of the tests.
基金The National Natural Science Foundation of China under contract Nos U2006213 and 41672272the Fundamental Research Funds for the Central Universities under contract No.201962011。
文摘Piezocone penetration test(CPTu),the preferred in-situ tool for submarine investigation,is significant for soil classification and soil depth profile prediction,which can be used to predict soil types and states.However,the accuracy of these methods needs to be validated for local conditions.To distinguish and evaluate the properties of the shallow surface sediments in Chengdao area of the Yellow River Delta,seabed CPTu tests were carried out at ten stations in this area.Nine soil classification methods based on CPTu data are applied for soil classification.The results of classification are compared with the in-situ sampling to determine whether the method can provide sufficient resolution.The methods presented by Robertson(based on soil behavior type index Ic),Olsen and Mitchell are the more consistent and compatible ones compared with other methods.Considering that silt soils have potential to liquefy under storm tide or other adverse conditions,this paper is able to screen soil classification methods suitable for the Chengdao area and help identify the areas where liquefaction or submarine landslide may occur through CPTu investigation.
基金This paper was financially supported by the National Natural Science Foundation of China(Grant No.41972285)the Youth Innovation Promotion Association CAS(Grant No.2018363)Key R&D projects of Hubei Province,China(Grant No.2021BAA186).
文摘Because of the cementation inherited from the parent rock,weathered granitic soil is usually susceptible to disturbance,which poses considerable challenges for laboratory characterization.The cone penetration test with pore pressure measurements has long been known for its reliability in site investigations and stratigraphic profiling.However,although extensive piezocone test results and experience are available for sedimentary soil,similar advances are yet to be made for weathered granitic soil.Moreover,the experience from sedimentary soil may not be directly applicable to weathered profiles because of the essentially different natures of the two types of geomaterials.This study performs seismic piezocone tests in a weathered granitic profile comprising residual granitic soil,completely weathered granite,and highly weathered granite.Pore pressure is measured at both the cone mid-face and the shoulder,and the effects of penetrometer size and penetration rate are considered.A series of updated soil behavior type charts is proposed to interpret the test results,thereby allowing the effect of weathering to be evaluated.This paper offers an important extension to the sparse data on the in situ responses of weathered materials.