Mechanical and electrical damages are introduced to study the fracture mechanics of piezoelectric ceramics in this paper. Two kinds of piezoelectric fracture criteria are established using the method of least squares ...Mechanical and electrical damages are introduced to study the fracture mechanics of piezoelectric ceramics in this paper. Two kinds of piezoelectric fracture criteria are established using the method of least squares combined with a damage analysis of the well-known piezoelectric fracture experiments of Park and Sun’s. One is based on a linear combination of the mechanical and electrical damages and the other on their nonlinear combination. When the combined damage D is up to its critical value Dc, piezoelectric fracture occurs. It is found from the qualitative comparison of the numerical results with the experimental data that the nonlinearly combined damage fracture criterion can give a better prediction of piezoelectric fracture. And it is concluded from the nonlinearly combined damage fracture criterion that a negative electric feld impedes fracture whereas the efect of a positive electric feld on fracture depends on its magnitude.展开更多
Piezoelectric ceramics based on PZT ceramics were prepared in solid state reaction with mixture of PbO, TiO2 and ZrO2, etc. XRD and SEM were used to confirm that the main phase in the material is tetragonal P4mm symme...Piezoelectric ceramics based on PZT ceramics were prepared in solid state reaction with mixture of PbO, TiO2 and ZrO2, etc. XRD and SEM were used to confirm that the main phase in the material is tetragonal P4mm symmetry. Samples sintered are of high density. Measurement on polarized products indicate that dielectric constant, piezoelectric constant, electromechanic coupling factor and mechanical quality factor are epsilon(r)=2015, d33=578.06X10(12)C/N, K-33=0.81 and Q(m)=543.8,,respectively.展开更多
Barium titanate(BaTiO_(3))piezoelectric ceramics with triply periodic minimal surface(TPMS)structures have been frequently used in filters,engines,artificial bones,and other fields due to their high specific surface a...Barium titanate(BaTiO_(3))piezoelectric ceramics with triply periodic minimal surface(TPMS)structures have been frequently used in filters,engines,artificial bones,and other fields due to their high specific surface area,high thermal stability,and good heat dissipation.However,only a limited number of studies have analyzed the effect of various parameters,such as different wall thicknesses and porosities of TPMS structures,on ceramic electromechanical performance.In this study,we first employed vat photopolymerization(VPP)three-dimensional(3D)printing technology to fabricate high-performance BaTiO_(3) ceramics.We investigated the slurry composition design and forming process and designed a stepwise sintering postprocessing technique to achieve a density of 96.3%and a compressive strength of 250±25 MPa,with the piezoelectric coefficient(d_(33))reaching 263 pC/N.Subsequently,we explored the influence of three TPMS structures,namely,diamond,gyroid,and Schwarz P,on the piezoelectric and mechanical properties of BaTiO_(3) ceramics,with the gyroid structure identified as exhibiting optimal performance.Finally,we examined the piezoelectric and mechanical properties of BaTiO_(3) ceramics with the gyroid structure of varying wall thicknesses and porosities,thus enabling the modulation of ceramic electromechanical performance.展开更多
In this work,we present a new piezoelectric solid solution consisting of two typical alkali niobate-based materials,K_(0.5)Na_(0.5)NbO_(3)(KNN)and Li_(0.15)Na_(0.85)NbO_(3)(LNN).Although KNN and LNN have the same pero...In this work,we present a new piezoelectric solid solution consisting of two typical alkali niobate-based materials,K_(0.5)Na_(0.5)NbO_(3)(KNN)and Li_(0.15)Na_(0.85)NbO_(3)(LNN).Although KNN and LNN have the same perovskite structure,they exhibit extremely different electrical properties and mechanical behaviors.The phase structures,electrical and mechanical evolutions of the new lead-free piezoelectric materials with different ratios of KNN and LNN are comprehensively and theoretically investigated.According to the Xray diffraction patterns and curves of permittivity versus temperature,a series of complicated phase transitions can be found with varied LNN content.Rietveld refinement results based on XRD patterns reveal an oxygen octahedron tilting in the LNN-rich crystal structure,and simultaneously the reasons for octahedron tilting are discussed.The distorted crystal structure is accompanied by extremely decreased electric properties but increased mechanical properties,which reveals electrical and mechanical properties of alkali niobate-based piezoelectric ceramics strongly depend on their inner structures,and the enhancement of intrinsic hardness results in the deterioration of piezoelectric properties.Our work exhibits the detailed evolutions of structure,electrical and mechanical properties from KNN to LNN,which provides experimental and theoretical basis for development of new alkali niobate-based piezoelectric materials.展开更多
Piezoelectric friction-inertial motor is known for its promise for a long-range and high-resolution motion.The movement of the slider/rotor of the motor is achieved by stick-slip effect.We report a relaxor-based-ferro...Piezoelectric friction-inertial motor is known for its promise for a long-range and high-resolution motion.The movement of the slider/rotor of the motor is achieved by stick-slip effect.We report a relaxor-based-ferroelectric-single-crystal cymbal actuator and a miniature piezoelectric friction-inertial linear motor(abbreviated as PFILM)fabricated with the cymbal actuator.The cymbal actuator is fabricated with a 10 mm diameter disk of 0.70Pb(Mg_(1/3)Nb_(2/3))O_3-0.30PbTiO_3 single crystal.The displacement of the cymbal actuator increases almost proportionally from 0to 23μm with driving voltage up to 500 V,and the minimal hysteresis is observed.The cymbalPFILM with 20 mm motion range works under driving voltage frequency of ca.100 Hz to ca.5kHz,the fastest speed is obtained with 3.5kHz and the no-load speed is 14mm/s and the maximum thrust force is 98 mN.Compared with a PFILM based on multilayer piezoelectric ceramic,the proposed motor has a larger stroke under DC/quasistatic input voltage in fine motion mode,but a smaller driving force in long-travel mode due to lower resonance frequency.展开更多
Piezoelectric ceramics with high mechanical quality factor Q_(m) and large piezoelectric coefficient d_(33) are urgently required for advanced piezoelectric applications.However,obtaining both of these prop-erties sim...Piezoelectric ceramics with high mechanical quality factor Q_(m) and large piezoelectric coefficient d_(33) are urgently required for advanced piezoelectric applications.However,obtaining both of these prop-erties simultaneously remains a difficult challenge due to their mutually restrictive relationship.Here 0.5Pb(Ni_(1/3)Nb_(2/3))O_(3)-0.5Pb(Zr_(0.3)Ti_(0.7))O_(3) piezoceramic with tetragonal(T)-rich MPB is designed as a matrix to construct the defect engineering by doping low-valent Mn ions.The strong coupling of defect dipole and T-rich phase can effectively hinder the rotation of P_(s),restrict domain wall motion and improve Q_(m).At the same time,the substituted Mn ions will introduce local random field,destroying the long-range or-dering of ferroelectric domain and reducing domain size.The miniaturized domain structure can increase poling efficiency and inhibit the reduction of d_(33).Guided by this strategy,Q_(m) has increased by more than 10 times and d_(33) has only decreased by about 25%.The optimized electromechanical performance with Q_(m)=822,d_(33)=502 pC/N,k_(p)=0.55 and tanδ=0.0069 can be obtained in the present study.展开更多
A new type of large-displacement actuating materials called RAINBOW (Reduced and Internally Biased Oxide Wafer) ceramics is fabricated by a chemical reduction of PLZT piezoelectric ceramics. It is found that PLZT is e...A new type of large-displacement actuating materials called RAINBOW (Reduced and Internally Biased Oxide Wafer) ceramics is fabricated by a chemical reduction of PLZT piezoelectric ceramics. It is found that PLZT is easily reduced and the thickness of reduced layer has a linear relationship with the reduction time. The optimal conditions for producing RAINBOW samples from PLZT are determined to be 950℃ for 1-1.5 hours. SEM micrograph shows that the RAINBOW ceramics are composed of reduced and unreduced layer obviously. And the reduced layer is transgranularly fractured while the unreduced ceramic is intergranularly fractured. Metallic lead and refractor oxides (PbO, ZrO_2, ZrTiO_4, etc.) are found in the reduced layer by XRD analyses, however, the crystal structure of PLZT is not found. The analysis of the reduction mechanism is in good accordance with experimental data.展开更多
The finite element formulation for analyzing static damage near a conducting crack in a thin piezoelectric plate is established from the virtual work principle of piezoelectricity.The damage fields under various mecha...The finite element formulation for analyzing static damage near a conducting crack in a thin piezoelectric plate is established from the virtual work principle of piezoelectricity.The damage fields under various mechanical and electrical loads are calculated carefully by using an effective iterative procedure.The numerical results show that all the damage fields around a crack tip are fan-shaped and the electric field applied has great influence on the mechanical damage, which is related to the piezoelectric properties.展开更多
ZrB2 powders were synthesized via a borothermal reduction reaction of ZrO2 with the assistance of NaCl under a flowing Ar atmosphere. The optimal temperature and reaction time were 1223 K and 3 h, respectively. Compar...ZrB2 powders were synthesized via a borothermal reduction reaction of ZrO2 with the assistance of NaCl under a flowing Ar atmosphere. The optimal temperature and reaction time were 1223 K and 3 h, respectively. Compared with the reactions conducted without the addition of NaCl, those performed with the addition of an appropriate amount of NaCl finished at substantially lower temperatures. However, the addition of too much NaCl suppressed this effect. With the assistance of NaCl, a special morphology of polyhedral ZrB2 particles covered with ZrB2 nanosheets was obtained. Moreover, the experimental results revealed that the special morphology was the result of the combined effects of B2O3 and NaCl. The formation of the special microstructure is explained on the basis of the “dissolution–recrystallization” mechanism.展开更多
This paper presents an investigation on dielectric and mechanical nonlinear properties in Mn-doped PMN-35PT ceramics. The structural study of the ceramics verifies that the 1% mol Mn doped PMN-35PT is a pure perovskit...This paper presents an investigation on dielectric and mechanical nonlinear properties in Mn-doped PMN-35PT ceramics. The structural study of the ceramics verifies that the 1% mol Mn doped PMN-35PT is a pure perovskite phase with a tetragonal symmetry. SEM micrograph shows the same microstructural mor- phology of an undoped ceramic. From the EPR spectra, it has been concluded that the major part of Mn is present in Mn2+ rather than in Mn4+ form. The addition of Mn2+ ions acts on the dielectric, piezoelectric and mechanical properties by decreasing the relative dielectric permittivity (3800 to 2074), the dielectric losses (0.60 to 0.53), the piezoelectric coefficient d33 (650 to 403 pC/N), and increasing the mechanical quality fac- tor Qm (78 to 317). It was found that in Mn2+ doped ceramics the dielectric response can not be described by Rayleigh law. This result can be understood taking into account that reversible motion of the domain wall is a relevant contribution to response of this material.展开更多
基金Project supported by the National Natural Science Foundation of China(No.10172036)and by the Scientific ResearchFoundation for Returned Overseas Chinese Scholars,State Education Ministry.
文摘Mechanical and electrical damages are introduced to study the fracture mechanics of piezoelectric ceramics in this paper. Two kinds of piezoelectric fracture criteria are established using the method of least squares combined with a damage analysis of the well-known piezoelectric fracture experiments of Park and Sun’s. One is based on a linear combination of the mechanical and electrical damages and the other on their nonlinear combination. When the combined damage D is up to its critical value Dc, piezoelectric fracture occurs. It is found from the qualitative comparison of the numerical results with the experimental data that the nonlinearly combined damage fracture criterion can give a better prediction of piezoelectric fracture. And it is concluded from the nonlinearly combined damage fracture criterion that a negative electric feld impedes fracture whereas the efect of a positive electric feld on fracture depends on its magnitude.
文摘Piezoelectric ceramics based on PZT ceramics were prepared in solid state reaction with mixture of PbO, TiO2 and ZrO2, etc. XRD and SEM were used to confirm that the main phase in the material is tetragonal P4mm symmetry. Samples sintered are of high density. Measurement on polarized products indicate that dielectric constant, piezoelectric constant, electromechanic coupling factor and mechanical quality factor are epsilon(r)=2015, d33=578.06X10(12)C/N, K-33=0.81 and Q(m)=543.8,,respectively.
基金sponsored by the Beijing Municipal Science and Technology Project(No.KM202010005003)he Beijing Nova Program(No.20220484008)the General Program of Science and Technology Development Project of Beijing Municipal Education Commission.
文摘Barium titanate(BaTiO_(3))piezoelectric ceramics with triply periodic minimal surface(TPMS)structures have been frequently used in filters,engines,artificial bones,and other fields due to their high specific surface area,high thermal stability,and good heat dissipation.However,only a limited number of studies have analyzed the effect of various parameters,such as different wall thicknesses and porosities of TPMS structures,on ceramic electromechanical performance.In this study,we first employed vat photopolymerization(VPP)three-dimensional(3D)printing technology to fabricate high-performance BaTiO_(3) ceramics.We investigated the slurry composition design and forming process and designed a stepwise sintering postprocessing technique to achieve a density of 96.3%and a compressive strength of 250±25 MPa,with the piezoelectric coefficient(d_(33))reaching 263 pC/N.Subsequently,we explored the influence of three TPMS structures,namely,diamond,gyroid,and Schwarz P,on the piezoelectric and mechanical properties of BaTiO_(3) ceramics,with the gyroid structure identified as exhibiting optimal performance.Finally,we examined the piezoelectric and mechanical properties of BaTiO_(3) ceramics with the gyroid structure of varying wall thicknesses and porosities,thus enabling the modulation of ceramic electromechanical performance.
基金supported by the National Natural Science Foundation of China(Grant No.51332003,No.11572057 and No.11702037)Program for Changjiang Scholars and Innovative Research Team(IRT14R37).
文摘In this work,we present a new piezoelectric solid solution consisting of two typical alkali niobate-based materials,K_(0.5)Na_(0.5)NbO_(3)(KNN)and Li_(0.15)Na_(0.85)NbO_(3)(LNN).Although KNN and LNN have the same perovskite structure,they exhibit extremely different electrical properties and mechanical behaviors.The phase structures,electrical and mechanical evolutions of the new lead-free piezoelectric materials with different ratios of KNN and LNN are comprehensively and theoretically investigated.According to the Xray diffraction patterns and curves of permittivity versus temperature,a series of complicated phase transitions can be found with varied LNN content.Rietveld refinement results based on XRD patterns reveal an oxygen octahedron tilting in the LNN-rich crystal structure,and simultaneously the reasons for octahedron tilting are discussed.The distorted crystal structure is accompanied by extremely decreased electric properties but increased mechanical properties,which reveals electrical and mechanical properties of alkali niobate-based piezoelectric ceramics strongly depend on their inner structures,and the enhancement of intrinsic hardness results in the deterioration of piezoelectric properties.Our work exhibits the detailed evolutions of structure,electrical and mechanical properties from KNN to LNN,which provides experimental and theoretical basis for development of new alkali niobate-based piezoelectric materials.
基金supported by the National Natural Science Foundation of China(No.51105193)the Natural Science Foundation of Jiangsu Province(No.BK20131362)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education InstitutionsJiangsu Students′Platform for Innovation and Entrepreneurship Training Program(No.201613655016X)
文摘Piezoelectric friction-inertial motor is known for its promise for a long-range and high-resolution motion.The movement of the slider/rotor of the motor is achieved by stick-slip effect.We report a relaxor-based-ferroelectric-single-crystal cymbal actuator and a miniature piezoelectric friction-inertial linear motor(abbreviated as PFILM)fabricated with the cymbal actuator.The cymbal actuator is fabricated with a 10 mm diameter disk of 0.70Pb(Mg_(1/3)Nb_(2/3))O_3-0.30PbTiO_3 single crystal.The displacement of the cymbal actuator increases almost proportionally from 0to 23μm with driving voltage up to 500 V,and the minimal hysteresis is observed.The cymbalPFILM with 20 mm motion range works under driving voltage frequency of ca.100 Hz to ca.5kHz,the fastest speed is obtained with 3.5kHz and the no-load speed is 14mm/s and the maximum thrust force is 98 mN.Compared with a PFILM based on multilayer piezoelectric ceramic,the proposed motor has a larger stroke under DC/quasistatic input voltage in fine motion mode,but a smaller driving force in long-travel mode due to lower resonance frequency.
基金financially supported by the National Natural Science Foundation of China(Nos.52172181 and22105017).
文摘Piezoelectric ceramics with high mechanical quality factor Q_(m) and large piezoelectric coefficient d_(33) are urgently required for advanced piezoelectric applications.However,obtaining both of these prop-erties simultaneously remains a difficult challenge due to their mutually restrictive relationship.Here 0.5Pb(Ni_(1/3)Nb_(2/3))O_(3)-0.5Pb(Zr_(0.3)Ti_(0.7))O_(3) piezoceramic with tetragonal(T)-rich MPB is designed as a matrix to construct the defect engineering by doping low-valent Mn ions.The strong coupling of defect dipole and T-rich phase can effectively hinder the rotation of P_(s),restrict domain wall motion and improve Q_(m).At the same time,the substituted Mn ions will introduce local random field,destroying the long-range or-dering of ferroelectric domain and reducing domain size.The miniaturized domain structure can increase poling efficiency and inhibit the reduction of d_(33).Guided by this strategy,Q_(m) has increased by more than 10 times and d_(33) has only decreased by about 25%.The optimized electromechanical performance with Q_(m)=822,d_(33)=502 pC/N,k_(p)=0.55 and tanδ=0.0069 can be obtained in the present study.
文摘A new type of large-displacement actuating materials called RAINBOW (Reduced and Internally Biased Oxide Wafer) ceramics is fabricated by a chemical reduction of PLZT piezoelectric ceramics. It is found that PLZT is easily reduced and the thickness of reduced layer has a linear relationship with the reduction time. The optimal conditions for producing RAINBOW samples from PLZT are determined to be 950℃ for 1-1.5 hours. SEM micrograph shows that the RAINBOW ceramics are composed of reduced and unreduced layer obviously. And the reduced layer is transgranularly fractured while the unreduced ceramic is intergranularly fractured. Metallic lead and refractor oxides (PbO, ZrO_2, ZrTiO_4, etc.) are found in the reduced layer by XRD analyses, however, the crystal structure of PLZT is not found. The analysis of the reduction mechanism is in good accordance with experimental data.
基金Project supported by the National Natural Science Foundation of China (No.10172036)the Education Ministry Scientific Research Foundation for Returned Overseas Chinese Scholars.
文摘The finite element formulation for analyzing static damage near a conducting crack in a thin piezoelectric plate is established from the virtual work principle of piezoelectricity.The damage fields under various mechanical and electrical loads are calculated carefully by using an effective iterative procedure.The numerical results show that all the damage fields around a crack tip are fan-shaped and the electric field applied has great influence on the mechanical damage, which is related to the piezoelectric properties.
基金financially supported by the Fundamental Research Funds for the Central Universities, China (No. FRF-GF-17-B41)
文摘ZrB2 powders were synthesized via a borothermal reduction reaction of ZrO2 with the assistance of NaCl under a flowing Ar atmosphere. The optimal temperature and reaction time were 1223 K and 3 h, respectively. Compared with the reactions conducted without the addition of NaCl, those performed with the addition of an appropriate amount of NaCl finished at substantially lower temperatures. However, the addition of too much NaCl suppressed this effect. With the assistance of NaCl, a special morphology of polyhedral ZrB2 particles covered with ZrB2 nanosheets was obtained. Moreover, the experimental results revealed that the special morphology was the result of the combined effects of B2O3 and NaCl. The formation of the special microstructure is explained on the basis of the “dissolution–recrystallization” mechanism.
文摘This paper presents an investigation on dielectric and mechanical nonlinear properties in Mn-doped PMN-35PT ceramics. The structural study of the ceramics verifies that the 1% mol Mn doped PMN-35PT is a pure perovskite phase with a tetragonal symmetry. SEM micrograph shows the same microstructural mor- phology of an undoped ceramic. From the EPR spectra, it has been concluded that the major part of Mn is present in Mn2+ rather than in Mn4+ form. The addition of Mn2+ ions acts on the dielectric, piezoelectric and mechanical properties by decreasing the relative dielectric permittivity (3800 to 2074), the dielectric losses (0.60 to 0.53), the piezoelectric coefficient d33 (650 to 403 pC/N), and increasing the mechanical quality fac- tor Qm (78 to 317). It was found that in Mn2+ doped ceramics the dielectric response can not be described by Rayleigh law. This result can be understood taking into account that reversible motion of the domain wall is a relevant contribution to response of this material.