PSN-PZN-PZT + x wt. %Cr2O3, X = 0.0-0-9, were prepared by conventional mixed oxide techniques at sintering temperatures of 1220 degrees C-1300 degrees C for 2 h. The effect of sintering temperature on the microstructu...PSN-PZN-PZT + x wt. %Cr2O3, X = 0.0-0-9, were prepared by conventional mixed oxide techniques at sintering temperatures of 1220 degrees C-1300 degrees C for 2 h. The effect of sintering temperature on the microstructure and the piezoelectric properties was investigated by XRD, SEM, and other conventional measurement. The result indicated that with temperature increasing, the valence of Cr ion from Cr5+ or Cr6+ changes into C3+, and the piezoelectric properties turn hard. With increasing Cr2O3 content, the amount of rhombohedral phases increases and the morphotropic boundary phase is correspondingly shifts to rhombohedral phase. A uniform microstructure and excellent comprehensive properties were obtained at 1240 degrees C as the amount of Cr2O3 is 0.5 wt.%.展开更多
Quantitative damage identification of surrounding rock is important to assess the current condition and residual strength of underground tunnels.In this work,an underground tunnel model with marble-like cementitious m...Quantitative damage identification of surrounding rock is important to assess the current condition and residual strength of underground tunnels.In this work,an underground tunnel model with marble-like cementitious materials was first fabricated using the three-dimensional(3D)printing technique and then loaded to simulate its failure mode in the laboratory.Lead zirconate titanate piezoelectric(PZT)transducers were embedded in the surrounding rock around the tunnel in the process of 3D printing.A 3D monitoring network was formed to locate damage areas and evaluate damage extent during loading.Results show that as the load increased,main cracks firstly appeared above the tunnel roof and below the floor,and then they coalesced into the tunnel boundary.Finally,the tunnel model was broken into several parts.The resonant frequency and the peak of the conductance signature firstly shifted rightwards with loading due to the sealing of microcracks,and then shifted backwards after new cracks appeared.An overall increase in the root-mean-square deviation(RMSD)calculated from conductance signatures of all the PZT transducers was observed as the load(damage)increased.Damage-dependent equivalent stiffness parameters(ESPs)were calculated from the real and imaginary signatures of each PZT at different damage states.Satisfactory agreement between equivalent and experimental ESP values was achieved.Also,the relationship between the change of the ESP and the residual strength was obtained.The method paves the way for damage identification and residual strength estimation of other 3D printed structures in civil engineering.展开更多
in order to realize the co-firing with Ag/Pd electrodes in multilayer devices, Pb(Zn1/3Nb2/3)(1-x-y) ZrxTiyO3(0.25<x<0.35, 0.25<y<0.35) piezoelectric ceramics thereafter designated PZN-PZT) modified by La2...in order to realize the co-firing with Ag/Pd electrodes in multilayer devices, Pb(Zn1/3Nb2/3)(1-x-y) ZrxTiyO3(0.25<x<0.35, 0.25<y<0.35) piezoelectric ceramics thereafter designated PZN-PZT) modified by La2O3 has been prepared by conventional technique with sintering temperature from 1100 degreesC to 1140 degreesC. X-ray diffraction patterns demonstrated that pure perovskite phase was obtained. Secondary electron image (SEI) showed that crystalline grains in ceramics were well grown. d(33) of manufactured sample was as high as 560 x 10(-12)C/N. k(p) was about 0.61 and tg delta about 30 x 10(-3). The existence of liquid phase examined by electron diffraction in PZN-PZT sample is beneficial to sintering of the ceramic.展开更多
PZT nanocrystalline powder was prepared by a stearic acid gel method. Thecrystallization process from the precursor was monitored by infrared spectroscopy, differentialthermal analysis, and thermogravimetric analysis....PZT nanocrystalline powder was prepared by a stearic acid gel method. Thecrystallization process from the precursor was monitored by infrared spectroscopy, differentialthermal analysis, and thermogravimetric analysis. The nano-sized PZT powder was characterized byX-ray diffraction and transmission electron microscopy. It shows that pure single-phase PZT powdercould be obtained at 450 deg C for 1 h, and the particle size is about 20 nm. With an increase inthe calcination temperature, the PZT crystallite size increased.展开更多
Nd3+ doped lead zirconate titanate (Pb1-3x/2NdxZr0.52Ti0.48O3, PNZT) nanopowders were prepared through a modified sol-gel method. The effects of Nd3+ doping on the microstructures and properties of PNZT ceramics have ...Nd3+ doped lead zirconate titanate (Pb1-3x/2NdxZr0.52Ti0.48O3, PNZT) nanopowders were prepared through a modified sol-gel method. The effects of Nd3+ doping on the microstructures and properties of PNZT ceramics have been studies. The grain sizes of the perovskite PNZT nanopowders were about 100nm and the lattice distortion of the PNZT increased with the content of Nd3+ up to 9 mol%. The dopant of Nd3+ resulted in the decrease of crystal lattice parameter a and the obvious increase of c and c/a, which effectively improved the sintered densification and activity of the PNZT ceramics. Due to lead vacancies caused by the doping of Nd3+ in the PZT, the piezoelectric constant, electromechanical coupling coefficient and dielectric constant observed were much higher than the monolithic PZT.展开更多
The explosive demands for facial masks as vital personal protection equipment(PPE)in the wake of Covid-19 have challenged many industries and enterprises in technology and capacity,and the piezoelectric ceramic(PZT)tr...The explosive demands for facial masks as vital personal protection equipment(PPE)in the wake of Covid-19 have challenged many industries and enterprises in technology and capacity,and the piezoelectric ceramic(PZT)transducers for the production of facial masks in the welding process are in heavy demand.In the earlier days of the epidemic,the supply of ceramic transducers cannot meet its increasing demands,and efforts in materials,development,and production are mobilized to provide the transducers to mask producers for quick production.The simplest solution is presented with the employment of Rayleigh-Ritz method for the vibration analysis,then different materials can be selected to achieve the required frequency and energy standards.The fully tailored method and results can be utilized by the engineers for quick development of the PZT transducers to perform precise function in welding.展开更多
We investigated the effect of the deposition temperature of PZT thin films with thicknesses of around 100 nm on the piezoelectric response using an atomic force microscope (AFM). The preferred orientation of the PZT t...We investigated the effect of the deposition temperature of PZT thin films with thicknesses of around 100 nm on the piezoelectric response using an atomic force microscope (AFM). The preferred orientation of the PZT thin film was changed from (001) to (110) as the deposition temperature increased. The surface roughness of PZT thin films decreased with the increase of deposition temperature. The maximum amplitude of the piezoelectric response of PZT thin films decreased till the deposition temperature increased to 350°C. This tendency seems to be due to the change of the preferred orientation form (001) to (110). At over 450°C, this maximum value decreased due to both the increase of the surface roughness and the degradation of the crystallinity.展开更多
Pb(Mg_(0.5)W_(0.5))O_(3)–Pb(Ni_(1/3)Nb_(2/3))O_(3)–Pb(Zr_(0.5)Ti_(0.5))O_(3)(PNN–PMW–PZT)piezoceramics were sintered at a low temperature of 900℃by the mixed metal oxide powder solid-state reaction route.CaCO_(3)...Pb(Mg_(0.5)W_(0.5))O_(3)–Pb(Ni_(1/3)Nb_(2/3))O_(3)–Pb(Zr_(0.5)Ti_(0.5))O_(3)(PNN–PMW–PZT)piezoceramics were sintered at a low temperature of 900℃by the mixed metal oxide powder solid-state reaction route.CaCO_(3)and Li_(2)CO_(3)as sintering aids and Yb_(2)O_(3)as a dopant were added into the PNN–PMW–PZT ceramic system for low-temperature sintering and enhancement of electrical properties,respectively.The effects of different Yb_(2)O_(3)doping amounts on the microstructure,dielectric,piezoelectric and ferroelectric properties of the samples were systematically investigated.The piezoceramics doped with 0.1 mol%Yb_(2)O_(3)have optimal electrical properties(d_(33)=563 pC/N,k_(p)=0.66,ε_(r)=2728(1 kHz),tanδ=0.0176(1 kHz),and T_(C)=301℃).While the piezoceramics doped with 0.3 mol%Yb_(2)O_(3)have optimal energy conversion properties:the piezoelectric voltage coefficient g_(33)=26.7×10^(-3)Vm/N and the effective piezoelectric energy conversion coefficient d_(33)×g_(33)=14366×10^(-15)m^(2)/N.展开更多
NaNbO3-Co2O3 co-added PZN-PZT (PZCNNT) ceramics were prepared using conventional solid state reaction. The piezoelectric and dielectric properties were measured. The experimental results show that the addition of 0....NaNbO3-Co2O3 co-added PZN-PZT (PZCNNT) ceramics were prepared using conventional solid state reaction. The piezoelectric and dielectric properties were measured. The experimental results show that the addition of 0.3mo1% Co2O3 leads to low dielectric loss (tgδ) in PZCNNT ceramics and the proper addition of NaNbO3 not only improves piezoelectric properties but also decreases intensively dielectric loss and mechanical loss. The optimal ceramic having d33=310 pC/N, kp=0.59, εr=985, tgδ=0.0034, Qm=1380 was obtained.展开更多
Piezoelectric atomizers exhibit the advantages of structural simplicity,portability,low energy consumption,low production costs,and good atomization.They have been extensively used in various fields,including inhalati...Piezoelectric atomizers exhibit the advantages of structural simplicity,portability,low energy consumption,low production costs,and good atomization.They have been extensively used in various fields,including inhalation therapy,inkjet printing,and spray cooling.Here,the research of piezoelectric atomizers is first summarized from the perspectives of theoretical investigation and applications.Subsequently,the existing investigation and applications on piezoelectric atomizers are classified in terms of their functionalities.The functions of inkjet printing,spray cooling,and inhalation therapy are described in detail.Finally,the future trends in this field are analyzed.It is indicated that the vibrating-mesh atomizer has a promising prospect in the market,signaling strong demand especially in upgaraded consumption and medical scenarios.展开更多
This paper presents the design, fabrication, and preliminary experimental result of an electric field microsensor based on the structure of piezoelectric interdigitated cantilevers with staggered vertical vibration mo...This paper presents the design, fabrication, and preliminary experimental result of an electric field microsensor based on the structure of piezoelectric interdigitated cantilevers with staggered vertical vibration mode. The working principle of this electric field microsensor is demonstrated, and the induced charges and structural parameters of this microsensor are simulated by the finite element method. The electric field microsensor was fabricated by Micro-Electro Mechanical Systems(MEMS) technique. Each cantilever is a multilayer compound structure(Al/Si3N4/ Pt/PZT/Pt/ Ti/SiO 2/Si), and Piezoelectric, PieZ oelectric ceramic Transducer(PZT)(PbZ rxTi(1–x)O3) layer, prepared by sol-gel method, is used as the piezoelectric material to drive the cantilevers vibrating. This electric field microsensor was tested under the DC electric field with the field intensity from 0 to 5×104 V/m. The output voltage signal of the electric field microsensor has a good linear relationship to the intensity of applied electric field. The performance could be improved with the optimized design of structure, and reformative fabrication processes of PZT material.展开更多
The epoxy resin (E-51) was used as polymer matrix,conductive carbon black (CB) as conductive filler,and PZT was used to prepare a composite by curing.The effects of PZT and CB content on the properties of PZT/ CB/ EP ...The epoxy resin (E-51) was used as polymer matrix,conductive carbon black (CB) as conductive filler,and PZT was used to prepare a composite by curing.The effects of PZT and CB content on the properties of PZT/ CB/ EP piezoelectric composite were studied.When the PZT content reaches 40 wt%,the optimized vibration attenuation properties of PZT/CB/EP materials could be achieved with a loss factor of 0.9 from room temperature to 60 ℃.With the increase of PZT content,the bending strength of PZT/CB/EP piezoelectric composite vibration reduction material firstly increased from 45 MPa to 65 MPa and then decreased to 38 MPa.At room temperature,the dielectric constant increased from 7 to 50,and the dielectric loss increased from 0.1 to 0.5.展开更多
The piezoelectric ceramics xPb(Mn1/3Sb2/3)O3-(1-x)Pb(Zr1/2Ti1/2)O3 (abbreviated as PMS-PZT) were synthesized by traditional ceramics process. The effect of sintering temperature and the amount of Pb(Mn1/3Sb2/3)O3 (abb...The piezoelectric ceramics xPb(Mn1/3Sb2/3)O3-(1-x)Pb(Zr1/2Ti1/2)O3 (abbreviated as PMS-PZT) were synthesized by traditional ceramics process. The effect of sintering temperature and the amount of Pb(Mn1/3Sb2/3)O3 (abbreviated as PMS) on phase structure, microstructure, piezoelectric and dielectric properties of PMS-PZT ceramics was investigated. The results show that the pure perovskite phase is in all ceramics specimens, the phase structure of PMS-PZT ceramics changes from tetragonal phase to single rhombohedral phase with the increasing amount of PMS. The dielectric constant εr, Curie temperature TC, electromechanical coupling factor kp and piezoelectric constant d33 decrease, whereas the mechanical quality factor Qm and dielectric loss tanδ increase with the increasing amount of PMS in system. The optimum sintering temperature is 1 200?1 250 ℃. It is concluded that the PMS-PZT (x=0.07) ceramics sintered at 1 250 ℃ is suitable for high-power piezoelectric transformer. These properties include εr= 674.8, tanδ=0.005 25, kp=0.658, Qm=1 520, d33=230 pC/N, Tc=275 ℃.展开更多
文摘PSN-PZN-PZT + x wt. %Cr2O3, X = 0.0-0-9, were prepared by conventional mixed oxide techniques at sintering temperatures of 1220 degrees C-1300 degrees C for 2 h. The effect of sintering temperature on the microstructure and the piezoelectric properties was investigated by XRD, SEM, and other conventional measurement. The result indicated that with temperature increasing, the valence of Cr ion from Cr5+ or Cr6+ changes into C3+, and the piezoelectric properties turn hard. With increasing Cr2O3 content, the amount of rhombohedral phases increases and the morphotropic boundary phase is correspondingly shifts to rhombohedral phase. A uniform microstructure and excellent comprehensive properties were obtained at 1240 degrees C as the amount of Cr2O3 is 0.5 wt.%.
基金The study is financially supported by the National Major Research Instrument Development Project of the National Natural Science Foundation of China(Grant No.51627812)the National Natural Science Foundation of China(Grant No.52078181)the Natural Science Foundation of Hebei Province,China(Grant No.E2019202484)。
文摘Quantitative damage identification of surrounding rock is important to assess the current condition and residual strength of underground tunnels.In this work,an underground tunnel model with marble-like cementitious materials was first fabricated using the three-dimensional(3D)printing technique and then loaded to simulate its failure mode in the laboratory.Lead zirconate titanate piezoelectric(PZT)transducers were embedded in the surrounding rock around the tunnel in the process of 3D printing.A 3D monitoring network was formed to locate damage areas and evaluate damage extent during loading.Results show that as the load increased,main cracks firstly appeared above the tunnel roof and below the floor,and then they coalesced into the tunnel boundary.Finally,the tunnel model was broken into several parts.The resonant frequency and the peak of the conductance signature firstly shifted rightwards with loading due to the sealing of microcracks,and then shifted backwards after new cracks appeared.An overall increase in the root-mean-square deviation(RMSD)calculated from conductance signatures of all the PZT transducers was observed as the load(damage)increased.Damage-dependent equivalent stiffness parameters(ESPs)were calculated from the real and imaginary signatures of each PZT at different damage states.Satisfactory agreement between equivalent and experimental ESP values was achieved.Also,the relationship between the change of the ESP and the residual strength was obtained.The method paves the way for damage identification and residual strength estimation of other 3D printed structures in civil engineering.
文摘in order to realize the co-firing with Ag/Pd electrodes in multilayer devices, Pb(Zn1/3Nb2/3)(1-x-y) ZrxTiyO3(0.25<x<0.35, 0.25<y<0.35) piezoelectric ceramics thereafter designated PZN-PZT) modified by La2O3 has been prepared by conventional technique with sintering temperature from 1100 degreesC to 1140 degreesC. X-ray diffraction patterns demonstrated that pure perovskite phase was obtained. Secondary electron image (SEI) showed that crystalline grains in ceramics were well grown. d(33) of manufactured sample was as high as 560 x 10(-12)C/N. k(p) was about 0.61 and tg delta about 30 x 10(-3). The existence of liquid phase examined by electron diffraction in PZN-PZT sample is beneficial to sintering of the ceramic.
基金This work was financially supported by the Ministry of Science and Technology of China through 973-project (No. 2002CB613301).
文摘PZT nanocrystalline powder was prepared by a stearic acid gel method. Thecrystallization process from the precursor was monitored by infrared spectroscopy, differentialthermal analysis, and thermogravimetric analysis. The nano-sized PZT powder was characterized byX-ray diffraction and transmission electron microscopy. It shows that pure single-phase PZT powdercould be obtained at 450 deg C for 1 h, and the particle size is about 20 nm. With an increase inthe calcination temperature, the PZT crystallite size increased.
基金Sponsored by the National Natural Science Foundation of China (Grant No.50742007)the 863 Project (Grant No.2007AA03Z103)+1 种基金the Scientific Projectof Heilongjiang Province (Grant No.E2007-31)the Key Lab of Electronic Engineering College of Heilongjiang Province(Grant No.D4D200618)
文摘Nd3+ doped lead zirconate titanate (Pb1-3x/2NdxZr0.52Ti0.48O3, PNZT) nanopowders were prepared through a modified sol-gel method. The effects of Nd3+ doping on the microstructures and properties of PNZT ceramics have been studies. The grain sizes of the perovskite PNZT nanopowders were about 100nm and the lattice distortion of the PNZT increased with the content of Nd3+ up to 9 mol%. The dopant of Nd3+ resulted in the decrease of crystal lattice parameter a and the obvious increase of c and c/a, which effectively improved the sintered densification and activity of the PNZT ceramics. Due to lead vacancies caused by the doping of Nd3+ in the PZT, the piezoelectric constant, electromechanical coupling coefficient and dielectric constant observed were much higher than the monolithic PZT.
基金supported in part by the National Natural Science Foundation of China(No.11672142)the Technology Innovation 2025 Program of the Municipality of Ningbo(No.2019B10122)。
文摘The explosive demands for facial masks as vital personal protection equipment(PPE)in the wake of Covid-19 have challenged many industries and enterprises in technology and capacity,and the piezoelectric ceramic(PZT)transducers for the production of facial masks in the welding process are in heavy demand.In the earlier days of the epidemic,the supply of ceramic transducers cannot meet its increasing demands,and efforts in materials,development,and production are mobilized to provide the transducers to mask producers for quick production.The simplest solution is presented with the employment of Rayleigh-Ritz method for the vibration analysis,then different materials can be selected to achieve the required frequency and energy standards.The fully tailored method and results can be utilized by the engineers for quick development of the PZT transducers to perform precise function in welding.
文摘We investigated the effect of the deposition temperature of PZT thin films with thicknesses of around 100 nm on the piezoelectric response using an atomic force microscope (AFM). The preferred orientation of the PZT thin film was changed from (001) to (110) as the deposition temperature increased. The surface roughness of PZT thin films decreased with the increase of deposition temperature. The maximum amplitude of the piezoelectric response of PZT thin films decreased till the deposition temperature increased to 350°C. This tendency seems to be due to the change of the preferred orientation form (001) to (110). At over 450°C, this maximum value decreased due to both the increase of the surface roughness and the degradation of the crystallinity.
基金financially supported by the Key Research and Development Program of the Sichuan Provincial Science and Technology Plan(No.2023DYF0173)the Fundamental Research Funds for the Central Universities(Nos.20826041E4280 and 20826041F4235).
文摘Pb(Mg_(0.5)W_(0.5))O_(3)–Pb(Ni_(1/3)Nb_(2/3))O_(3)–Pb(Zr_(0.5)Ti_(0.5))O_(3)(PNN–PMW–PZT)piezoceramics were sintered at a low temperature of 900℃by the mixed metal oxide powder solid-state reaction route.CaCO_(3)and Li_(2)CO_(3)as sintering aids and Yb_(2)O_(3)as a dopant were added into the PNN–PMW–PZT ceramic system for low-temperature sintering and enhancement of electrical properties,respectively.The effects of different Yb_(2)O_(3)doping amounts on the microstructure,dielectric,piezoelectric and ferroelectric properties of the samples were systematically investigated.The piezoceramics doped with 0.1 mol%Yb_(2)O_(3)have optimal electrical properties(d_(33)=563 pC/N,k_(p)=0.66,ε_(r)=2728(1 kHz),tanδ=0.0176(1 kHz),and T_(C)=301℃).While the piezoceramics doped with 0.3 mol%Yb_(2)O_(3)have optimal energy conversion properties:the piezoelectric voltage coefficient g_(33)=26.7×10^(-3)Vm/N and the effective piezoelectric energy conversion coefficient d_(33)×g_(33)=14366×10^(-15)m^(2)/N.
文摘NaNbO3-Co2O3 co-added PZN-PZT (PZCNNT) ceramics were prepared using conventional solid state reaction. The piezoelectric and dielectric properties were measured. The experimental results show that the addition of 0.3mo1% Co2O3 leads to low dielectric loss (tgδ) in PZCNNT ceramics and the proper addition of NaNbO3 not only improves piezoelectric properties but also decreases intensively dielectric loss and mechanical loss. The optimal ceramic having d33=310 pC/N, kp=0.59, εr=985, tgδ=0.0034, Qm=1380 was obtained.
基金This work was supported by the National Natural Science Foundation of China(No.51375227)。
文摘Piezoelectric atomizers exhibit the advantages of structural simplicity,portability,low energy consumption,low production costs,and good atomization.They have been extensively used in various fields,including inhalation therapy,inkjet printing,and spray cooling.Here,the research of piezoelectric atomizers is first summarized from the perspectives of theoretical investigation and applications.Subsequently,the existing investigation and applications on piezoelectric atomizers are classified in terms of their functionalities.The functions of inkjet printing,spray cooling,and inhalation therapy are described in detail.Finally,the future trends in this field are analyzed.It is indicated that the vibrating-mesh atomizer has a promising prospect in the market,signaling strong demand especially in upgaraded consumption and medical scenarios.
文摘This paper presents the design, fabrication, and preliminary experimental result of an electric field microsensor based on the structure of piezoelectric interdigitated cantilevers with staggered vertical vibration mode. The working principle of this electric field microsensor is demonstrated, and the induced charges and structural parameters of this microsensor are simulated by the finite element method. The electric field microsensor was fabricated by Micro-Electro Mechanical Systems(MEMS) technique. Each cantilever is a multilayer compound structure(Al/Si3N4/ Pt/PZT/Pt/ Ti/SiO 2/Si), and Piezoelectric, PieZ oelectric ceramic Transducer(PZT)(PbZ rxTi(1–x)O3) layer, prepared by sol-gel method, is used as the piezoelectric material to drive the cantilevers vibrating. This electric field microsensor was tested under the DC electric field with the field intensity from 0 to 5×104 V/m. The output voltage signal of the electric field microsensor has a good linear relationship to the intensity of applied electric field. The performance could be improved with the optimized design of structure, and reformative fabrication processes of PZT material.
基金Funded by State Key Laboratory of Power Grid Environmental Protection(No.GYW51201801173)。
文摘The epoxy resin (E-51) was used as polymer matrix,conductive carbon black (CB) as conductive filler,and PZT was used to prepare a composite by curing.The effects of PZT and CB content on the properties of PZT/ CB/ EP piezoelectric composite were studied.When the PZT content reaches 40 wt%,the optimized vibration attenuation properties of PZT/CB/EP materials could be achieved with a loss factor of 0.9 from room temperature to 60 ℃.With the increase of PZT content,the bending strength of PZT/CB/EP piezoelectric composite vibration reduction material firstly increased from 45 MPa to 65 MPa and then decreased to 38 MPa.At room temperature,the dielectric constant increased from 7 to 50,and the dielectric loss increased from 0.1 to 0.5.
基金Project (10474077) supported by the National Natural Science Foundation of China
文摘The piezoelectric ceramics xPb(Mn1/3Sb2/3)O3-(1-x)Pb(Zr1/2Ti1/2)O3 (abbreviated as PMS-PZT) were synthesized by traditional ceramics process. The effect of sintering temperature and the amount of Pb(Mn1/3Sb2/3)O3 (abbreviated as PMS) on phase structure, microstructure, piezoelectric and dielectric properties of PMS-PZT ceramics was investigated. The results show that the pure perovskite phase is in all ceramics specimens, the phase structure of PMS-PZT ceramics changes from tetragonal phase to single rhombohedral phase with the increasing amount of PMS. The dielectric constant εr, Curie temperature TC, electromechanical coupling factor kp and piezoelectric constant d33 decrease, whereas the mechanical quality factor Qm and dielectric loss tanδ increase with the increasing amount of PMS in system. The optimum sintering temperature is 1 200?1 250 ℃. It is concluded that the PMS-PZT (x=0.07) ceramics sintered at 1 250 ℃ is suitable for high-power piezoelectric transformer. These properties include εr= 674.8, tanδ=0.005 25, kp=0.658, Qm=1 520, d33=230 pC/N, Tc=275 ℃.