The effective properties of piezoelectric composite materials are very important in engineering. In this paper, the closed_form solutions of the constraint_strain and the constraint_electric_field of a transversely is...The effective properties of piezoelectric composite materials are very important in engineering. In this paper, the closed_form solutions of the constraint_strain and the constraint_electric_field of a transversely isotropic spherical inclusion in an infinite non_piezoelectric matrix are obtained. The dilute solutions of piezoelectric composite materials with transversely isotropic spherical inclusions are also given. The solutions in the paper can be readily utilized in analysis and design of piezoelectric composite materials or smart materials and smart structures.展开更多
Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth,but such separators still fail to satisfactorily support durable operation of lithiu...Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth,but such separators still fail to satisfactorily support durable operation of lithium metal batteries owing to the fragile ceramic layer or low-piezoelectricity polymer as employed.Herein,by combining PVDF-HFP and ferroelectric BaTiO_(3),we develop a homogeneous,single-layer composite separator with strong piezoelectric effects to inhibit dendrite growth while maintaining high mechanical strength.As squeezed by local protrusion,the polarized PVDF-HFP/BaTiO_(3)composite separator generates a local voltage to suppress the local-intensified electric field and further deconcentrate regional lithium-ion flux to retard lithium deposition on the protrusion,hence enabling a smoother and more compact lithium deposition morphology than the unpoled composite separator and the pure PVDF-HFP separator,especially at high rates.Remarkably,the homogeneous incorporation of BaTiO_(3)highly improves the piezoelectric performances of the separator with residual polarization of 0.086 pC cm^(-2)after polarization treatment,four times that of the pure PVDF-HFP separator,and simultaneously increases the transference number of lithium-ion from 0.45 to 0.57.Beneficial from the prominent piezoelectric mechanism,the polarized PVDF-HFP/BaTiO_(3)composite separator enables stable cyclic performances of Li||LiFePO_(4)cells for 400 cycles at 2 C(1 C=170 mA g^(-1))with a capacity retention above 99%,and for 600 cycles at 5 C with a capacity retention over 85%.展开更多
Some compensation methods have been pro- posed to mitigate the degradation of radiation characteris- tics caused by composite material radomes, however most of them are complex and not applicable for large radomes, fo...Some compensation methods have been pro- posed to mitigate the degradation of radiation characteris- tics caused by composite material radomes, however most of them are complex and not applicable for large radomes, for example, the modification of geometric shape by grinding process. A novel and simple compensation strat- egy based on phase modification is proposed for large reflector antenna-radome systems. Through moving the feed or sub-reflector along axial direction opportunely, the modification of phase distribution in the original aperture of an enclosed reflector antenna can be used to reduce the phase shift caused by composite material radomes. The distortion of far-field pattern can be minimized. The modification formulas are proposed, and the limitation of their application is also discussed. Numerical simulations for a one-piece composite materials sandwich radome and a 40 m multipartite composite materials sandwich radome verify that the novel compensation strategy achieves sat- isfactory compensated results, and improves the distortion of the far-field pattern for the composite material radomes. For one-piece dielectric radome, more than 60% phasedifference caused by radome is reduced. For multipartite radome, the sidelobe level improves about 1.2 dB, the nulling depth improves about 3 dB. The improvement of far-field pattern could be obtained effectively and simply by moving the feed or sub-reflector according to phase shift of the radome.展开更多
Based on the theory of composite materials and phononic crystals(PCs),a large-size rectangular piezoelectric composite plate with the quasi-periodic PC structure composed of PZT-4 and epoxy is proposed in this paper.T...Based on the theory of composite materials and phononic crystals(PCs),a large-size rectangular piezoelectric composite plate with the quasi-periodic PC structure composed of PZT-4 and epoxy is proposed in this paper.This PC structure can suppress the transverse vibration of the piezoelectric composite plate so that the thickness mode is purer and the thickness vibration amplitude is more uniform.Firstly,the vibration of the model is analyzed theoretically,the electromechanical equivalent circuit diagram of three-dimensional coupled vibration is established,and the resonance frequency equation is derived.The effects of the length,width,and thickness of the piezoelectric composite plate at the resonant frequency are obtained by the analytical method and the finite element method,the effective electromechanical coupling coefficient is also analyzed.The results show that the resonant frequency can be changed regularly and the electromechanical conversion can be improved by adjusting the size of the rectangular piezoelectric plate.The effect of the volume fraction of the scatterer on the resonant frequency in the thickness direction is studied by the finite element method.The band gap in X and Y directions of large-size rectangular piezoelectric plate with quasi-periodic PC structures are calculated.The results show that the theoretical results are in good agreement with the simulation results.When the resonance frequency is in the band gap,the decoupling phenomenon occurs,and then the vibration mode in the thickness direction is purer.展开更多
Researches on parity-time(PT)symmetry in acoustic field can provide an efficient platform for controlling the travelling acoustic waves with balanced loss and gain.Here,we report a feasible design of PT-symmetric syst...Researches on parity-time(PT)symmetry in acoustic field can provide an efficient platform for controlling the travelling acoustic waves with balanced loss and gain.Here,we report a feasible design of PT-symmetric system constructed by piezoelectric composite plates with two different active external circuits.By judiciously adjusting the resistances and inductances in the external circuits,we obtain the exceptional point due to the spontaneous breaking of PT symmetry at the desired frequencies and can observe the unidirectional invisibility.Moreover,the system can be at PT exact phase or broken phase at the same frequency in the same structure by merely adjusting the external circuits,which represents the active control that makes the acoustic manipulation more convenient.Our study may provide a feasible way for manipulating acoustic waves and inspire the application of piezoelectric composite materials in acoustic structures.展开更多
This paper presents an analytical solution for the free vibration behavior of functionally graded carbon nanotube-reinforced composite(FG-CNTRC) doubly curved shallow shells with integrated piezoelectric layers. Here,...This paper presents an analytical solution for the free vibration behavior of functionally graded carbon nanotube-reinforced composite(FG-CNTRC) doubly curved shallow shells with integrated piezoelectric layers. Here, the linear distribution of electric potential across the thickness of the piezoelectric layer and five different types of carbon nanotube(CNT) distributions through the thickness direction are considered. Based on the four-variable shear deformation refined shell theory, governing equations are obtained by applying Hamilton's principle. Navier's solution for the shell panels with the simply supported boundary condition at all four edges is derived. Several numerical examples validate the accuracy of the presented solution. New parametric studies regarding the effects of different material properties, shell geometric parameters, and electrical boundary conditions on the free vibration responses of the hybrid panels are investigated and discussed in detail.展开更多
The orthotropic mechanical sensor of piezoelectric compositematerial made from piezoelectric ceramic and resin materials andtheir sensing mechanism are presented. The sensing equations of thead- hered- and embedded-ty...The orthotropic mechanical sensor of piezoelectric compositematerial made from piezoelectric ceramic and resin materials andtheir sensing mechanism are presented. The sensing equations of thead- hered- and embedded-type sensing units are deduced, which areused to detect the stresses in orthotropic material structures. Thesurface strain of the orthogonal plate is measured under the actionof the planar stress field, and the error is analyzed.展开更多
Abstract In periodic cellular structures, novel pattern transformations are triggered by a reversible elastic instability under the axial compression. Based on the deformation-triggered new pattern, periodic cellular ...Abstract In periodic cellular structures, novel pattern transformations are triggered by a reversible elastic instability under the axial compression. Based on the deformation-triggered new pattern, periodic cellular structures can achieve special mechanical properties. In this paper, the designed architecture materials which include elastomer matrixes containing empty holes or filled holes with hydrogel material are modeled and simulated to investigate the mechanical property of the periodic materials. By analyzing the relationship between nominal stress and nominal strain of periodic material, and the corresponding deformed patterns, the influence of geometry and shapes of the holes on the mechanical property of architecture material is studied in more details. We hope this study can provide future perspectives for the deformation-triggered periodic structures.展开更多
In this paper,we propose a specific two-layer model consisting of a functionally graded(FG)layer and a piezoelectric semiconductor(PS)layer.Based on the macroscopic theory of PS materials,the effects brought about by ...In this paper,we propose a specific two-layer model consisting of a functionally graded(FG)layer and a piezoelectric semiconductor(PS)layer.Based on the macroscopic theory of PS materials,the effects brought about by the attached FG layer on the piezotronic behaviors of homogeneous n-type PS fibers and PN junctions are investigated.The semi-analytical solutions of the electromechanical fields are obtained by expanding the displacement and carrier concentration variation into power series.Results show that the antisymmetry of the potential and electron concentration distributions in homogeneous n-type PS fibers is destroyed due to the material inhomogeneity of the attached FG layer.In addition,by creating jump discontinuities in the material properties of the FG layer,potential barriers/wells can be produced in the middle of the fiber.Similarly,the potential barrier configuration near the interface of a homogeneous PS PN junction can also be manipulated in this way,which offers a new choice for the design of PN junction based devices.展开更多
The interaction between a piezoelectric screw dislocation and an interphase layer in piezoelectric solids is theoretically investigated. Here, the dislocation located at arbitrary points inside either the matrix or th...The interaction between a piezoelectric screw dislocation and an interphase layer in piezoelectric solids is theoretically investigated. Here, the dislocation located at arbitrary points inside either the matrix or the inclusion and the interfaces of the interphase layer are imperfect. By the complex variable method, the explicit solutions to the complex potentials are given, and the electroelastic fields can be derived from them. The image force acting on the dislocation can be obtained by the generalized Peach- Koehler formula. The motion of the piezoelectric screw dislocation and its equilibrium positions are discussed for variable parameters. The important results show that, if the inner interface of the interphase layer is imperfect and the magnitude of degree of the interface imperfection reaches the certain value, two equilibrium positions of the piezoelectric screw dislocation in the matrix near the interface are found for the certain material combination which has never been observed in the previous studies (without considering the interface imperfection).展开更多
Based on the classical laminated plate theory, a novel finite element formulation is presented for modeling the static response of laminated composites containing distributed piezoelectric ceramic subjected to electri...Based on the classical laminated plate theory, a novel finite element formulation is presented for modeling the static response of laminated composites containing distributed piezoelectric ceramic subjected to electric loadings. A four-node rectangular composite element with an additional voltage freedom per piezoelectric layer is implemented for the analysis. The element can predict more accurately the bending response of the structure because of its new displacement radixes. Numerical examples ere performed and the calculated data compare very well with existing results in the literatures.展开更多
A dynamic mode) for 2-2 piezo-composite material was developed,in which the acoustic plane waves propagating along the interface were solved and their dispersion curves were obtained.By taking the resonator thickness ...A dynamic mode) for 2-2 piezo-composite material was developed,in which the acoustic plane waves propagating along the interface were solved and their dispersion curves were obtained.By taking the resonator thickness as half a wavelength or its odd fold,the resonant frequencies of the composite transducers are in agreement with the dispersion curves.From the dynamic model the piezoelectric coupling coefficients for the thickness vibration of the composite could be obtained as a function of the composite thickness as well as the volume fraction of the ceramic phase.The results show that when the thickness vibration mode is decoupled with the lateral periodical vibration mode,the piezoelectric coupling reaches its maximum.This condition gives a maximum frequency bandwidth and a greatest piezoelectric coupling coefficient for the composite material.展开更多
This paper presents an analysis of the active control of random vibration for lami- nated composite plates using piezoelectric fiber reinforced composites (PFRC). With Hamilton's principle and the Rayleigh-Ritz met...This paper presents an analysis of the active control of random vibration for lami- nated composite plates using piezoelectric fiber reinforced composites (PFRC). With Hamilton's principle and the Rayleigh-Ritz method, the equation of motion for the resulting electromechani- cal coupling system is derived. A velocity feedback control rule is employed to obtain an effective active damping in the suppression of random vibration. The power spectral density and mean- square displacements of the random vibration for laminated plates under different control gains are simulated and the validity of the present control strategy is confirmed. The effect of piezoelec- tric fiber orientation in the PFRC layer on the random vibration suppression is also investigated. The analytical methodology can be expanded to other kinds of random vibration.展开更多
文摘The effective properties of piezoelectric composite materials are very important in engineering. In this paper, the closed_form solutions of the constraint_strain and the constraint_electric_field of a transversely isotropic spherical inclusion in an infinite non_piezoelectric matrix are obtained. The dilute solutions of piezoelectric composite materials with transversely isotropic spherical inclusions are also given. The solutions in the paper can be readily utilized in analysis and design of piezoelectric composite materials or smart materials and smart structures.
基金supported by the Science Foundation of National Key Laboratory of Science and Technology on Advanced Composites in Special Environmentsthe National Natural Science Foundation of China(12002109)
文摘Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth,but such separators still fail to satisfactorily support durable operation of lithium metal batteries owing to the fragile ceramic layer or low-piezoelectricity polymer as employed.Herein,by combining PVDF-HFP and ferroelectric BaTiO_(3),we develop a homogeneous,single-layer composite separator with strong piezoelectric effects to inhibit dendrite growth while maintaining high mechanical strength.As squeezed by local protrusion,the polarized PVDF-HFP/BaTiO_(3)composite separator generates a local voltage to suppress the local-intensified electric field and further deconcentrate regional lithium-ion flux to retard lithium deposition on the protrusion,hence enabling a smoother and more compact lithium deposition morphology than the unpoled composite separator and the pure PVDF-HFP separator,especially at high rates.Remarkably,the homogeneous incorporation of BaTiO_(3)highly improves the piezoelectric performances of the separator with residual polarization of 0.086 pC cm^(-2)after polarization treatment,four times that of the pure PVDF-HFP separator,and simultaneously increases the transference number of lithium-ion from 0.45 to 0.57.Beneficial from the prominent piezoelectric mechanism,the polarized PVDF-HFP/BaTiO_(3)composite separator enables stable cyclic performances of Li||LiFePO_(4)cells for 400 cycles at 2 C(1 C=170 mA g^(-1))with a capacity retention above 99%,and for 600 cycles at 5 C with a capacity retention over 85%.
基金Supported by National Natural Science Foundation of China(Grant Nos.51475348,51305322 and 51490660)Open Foundation of State Key Laboratory of Mechanical Transmissions(SKLMT-KFKT-201409)Fundamental Research Funds for the Central Universities of China
文摘Some compensation methods have been pro- posed to mitigate the degradation of radiation characteris- tics caused by composite material radomes, however most of them are complex and not applicable for large radomes, for example, the modification of geometric shape by grinding process. A novel and simple compensation strat- egy based on phase modification is proposed for large reflector antenna-radome systems. Through moving the feed or sub-reflector along axial direction opportunely, the modification of phase distribution in the original aperture of an enclosed reflector antenna can be used to reduce the phase shift caused by composite material radomes. The distortion of far-field pattern can be minimized. The modification formulas are proposed, and the limitation of their application is also discussed. Numerical simulations for a one-piece composite materials sandwich radome and a 40 m multipartite composite materials sandwich radome verify that the novel compensation strategy achieves sat- isfactory compensated results, and improves the distortion of the far-field pattern for the composite material radomes. For one-piece dielectric radome, more than 60% phasedifference caused by radome is reduced. For multipartite radome, the sidelobe level improves about 1.2 dB, the nulling depth improves about 3 dB. The improvement of far-field pattern could be obtained effectively and simply by moving the feed or sub-reflector according to phase shift of the radome.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674206,11874253,and12174240)the Fundamental Research Funds for the Central Universities,China(Grant No.020CBLY003)。
文摘Based on the theory of composite materials and phononic crystals(PCs),a large-size rectangular piezoelectric composite plate with the quasi-periodic PC structure composed of PZT-4 and epoxy is proposed in this paper.This PC structure can suppress the transverse vibration of the piezoelectric composite plate so that the thickness mode is purer and the thickness vibration amplitude is more uniform.Firstly,the vibration of the model is analyzed theoretically,the electromechanical equivalent circuit diagram of three-dimensional coupled vibration is established,and the resonance frequency equation is derived.The effects of the length,width,and thickness of the piezoelectric composite plate at the resonant frequency are obtained by the analytical method and the finite element method,the effective electromechanical coupling coefficient is also analyzed.The results show that the resonant frequency can be changed regularly and the electromechanical conversion can be improved by adjusting the size of the rectangular piezoelectric plate.The effect of the volume fraction of the scatterer on the resonant frequency in the thickness direction is studied by the finite element method.The band gap in X and Y directions of large-size rectangular piezoelectric plate with quasi-periodic PC structures are calculated.The results show that the theoretical results are in good agreement with the simulation results.When the resonance frequency is in the band gap,the decoupling phenomenon occurs,and then the vibration mode in the thickness direction is purer.
基金supported by the National Key R&D Program of China(Grant No.2017YFA0303700)the National Natural Science Foundation of China(Grant Nos.11634006,11934009,and 12074184)+1 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20191245)the State Key Laboratory of Acoustics,Chinese Academy of Sciences.
文摘Researches on parity-time(PT)symmetry in acoustic field can provide an efficient platform for controlling the travelling acoustic waves with balanced loss and gain.Here,we report a feasible design of PT-symmetric system constructed by piezoelectric composite plates with two different active external circuits.By judiciously adjusting the resistances and inductances in the external circuits,we obtain the exceptional point due to the spontaneous breaking of PT symmetry at the desired frequencies and can observe the unidirectional invisibility.Moreover,the system can be at PT exact phase or broken phase at the same frequency in the same structure by merely adjusting the external circuits,which represents the active control that makes the acoustic manipulation more convenient.Our study may provide a feasible way for manipulating acoustic waves and inspire the application of piezoelectric composite materials in acoustic structures.
基金Project supported by the Foundation for Science and Technology Development of National University of Civil Engineering-Ha Noi-Vietnam (No. 27-2020/KHXD-TD)。
文摘This paper presents an analytical solution for the free vibration behavior of functionally graded carbon nanotube-reinforced composite(FG-CNTRC) doubly curved shallow shells with integrated piezoelectric layers. Here, the linear distribution of electric potential across the thickness of the piezoelectric layer and five different types of carbon nanotube(CNT) distributions through the thickness direction are considered. Based on the four-variable shear deformation refined shell theory, governing equations are obtained by applying Hamilton's principle. Navier's solution for the shell panels with the simply supported boundary condition at all four edges is derived. Several numerical examples validate the accuracy of the presented solution. New parametric studies regarding the effects of different material properties, shell geometric parameters, and electrical boundary conditions on the free vibration responses of the hybrid panels are investigated and discussed in detail.
基金the National Natural Science Foundation (No.59635640)the Science Foundation of Jiangsu Education Committee (99KJD130001)the Science Foundation of Jiangsu Province (BK99116).
文摘The orthotropic mechanical sensor of piezoelectric compositematerial made from piezoelectric ceramic and resin materials andtheir sensing mechanism are presented. The sensing equations of thead- hered- and embedded-type sensing units are deduced, which areused to detect the stresses in orthotropic material structures. Thesurface strain of the orthogonal plate is measured under the actionof the planar stress field, and the error is analyzed.
基金supported by the National Natural Science Foundation of China(11242011 and 11021202)
文摘Abstract In periodic cellular structures, novel pattern transformations are triggered by a reversible elastic instability under the axial compression. Based on the deformation-triggered new pattern, periodic cellular structures can achieve special mechanical properties. In this paper, the designed architecture materials which include elastomer matrixes containing empty holes or filled holes with hydrogel material are modeled and simulated to investigate the mechanical property of the periodic materials. By analyzing the relationship between nominal stress and nominal strain of periodic material, and the corresponding deformed patterns, the influence of geometry and shapes of the holes on the mechanical property of architecture material is studied in more details. We hope this study can provide future perspectives for the deformation-triggered periodic structures.
基金supported by the National Natural Science Foundation of China(Nos.12061131013,11972276,1211101401,12172171,and 12102183)the State Key Laboratory of Mechanics and Control of Mechanical Structures of Nanjing University of Aeronautics and Astronautics(No.MCMS-E-0520K02)+5 种基金the Fundamental Research Funds for the Central Universities of China(Nos.NE2020002 and NS2019007)the National Natural Science Foundation of China for Creative Research Groups(No.51921003)the Postgraduate Research&Practice Innovation Program of Jiangsu Province of China(No.KYCX210179)the National Natural Science Foundation of Jiangsu Province of China(No.BK20211176)the Local Science and Technology Development Fund Projects Guided by the Central Government of China(No.2021Szvup061)the Jiangsu High-Level Innovative and Entrepreneurial Talents Introduction Plan(Shuangchuang Doctor Program,No.JSSCBS20210166)。
文摘In this paper,we propose a specific two-layer model consisting of a functionally graded(FG)layer and a piezoelectric semiconductor(PS)layer.Based on the macroscopic theory of PS materials,the effects brought about by the attached FG layer on the piezotronic behaviors of homogeneous n-type PS fibers and PN junctions are investigated.The semi-analytical solutions of the electromechanical fields are obtained by expanding the displacement and carrier concentration variation into power series.Results show that the antisymmetry of the potential and electron concentration distributions in homogeneous n-type PS fibers is destroyed due to the material inhomogeneity of the attached FG layer.In addition,by creating jump discontinuities in the material properties of the FG layer,potential barriers/wells can be produced in the middle of the fiber.Similarly,the potential barrier configuration near the interface of a homogeneous PS PN junction can also be manipulated in this way,which offers a new choice for the design of PN junction based devices.
基金Project supported by the National Natural Science Foundation of China(Nos.11172094 and 11172095)the Program for New Century Excellent Talents in University of China(No.NCET-110122)+1 种基金the Science Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(Nos.61075005 and 51075001)the Hunan Provincial Natural Science Foundation for Creative Research Groups of China(No.12JJ7001)
文摘The interaction between a piezoelectric screw dislocation and an interphase layer in piezoelectric solids is theoretically investigated. Here, the dislocation located at arbitrary points inside either the matrix or the inclusion and the interfaces of the interphase layer are imperfect. By the complex variable method, the explicit solutions to the complex potentials are given, and the electroelastic fields can be derived from them. The image force acting on the dislocation can be obtained by the generalized Peach- Koehler formula. The motion of the piezoelectric screw dislocation and its equilibrium positions are discussed for variable parameters. The important results show that, if the inner interface of the interphase layer is imperfect and the magnitude of degree of the interface imperfection reaches the certain value, two equilibrium positions of the piezoelectric screw dislocation in the matrix near the interface are found for the certain material combination which has never been observed in the previous studies (without considering the interface imperfection).
基金Supported by the National Natural Science Foundation of China (No.10072026)
文摘Based on the classical laminated plate theory, a novel finite element formulation is presented for modeling the static response of laminated composites containing distributed piezoelectric ceramic subjected to electric loadings. A four-node rectangular composite element with an additional voltage freedom per piezoelectric layer is implemented for the analysis. The element can predict more accurately the bending response of the structure because of its new displacement radixes. Numerical examples ere performed and the calculated data compare very well with existing results in the literatures.
基金Project supported by the National Natural Science Foundation of China.
文摘A dynamic mode) for 2-2 piezo-composite material was developed,in which the acoustic plane waves propagating along the interface were solved and their dispersion curves were obtained.By taking the resonator thickness as half a wavelength or its odd fold,the resonant frequencies of the composite transducers are in agreement with the dispersion curves.From the dynamic model the piezoelectric coupling coefficients for the thickness vibration of the composite could be obtained as a function of the composite thickness as well as the volume fraction of the ceramic phase.The results show that when the thickness vibration mode is decoupled with the lateral periodical vibration mode,the piezoelectric coupling reaches its maximum.This condition gives a maximum frequency bandwidth and a greatest piezoelectric coupling coefficient for the composite material.
基金Project supported by the National Natural Science Foundation of China(Nos.11502159 and 11390362)Natural Science Foundation of Shanxi(No.2015021014)+4 种基金the Top Young Academic Leaders of High Learning Institutions of ShanxiShanxi Scholarship Council of Chinathe Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Provincethe Scientific Research Foundation for the Returned Overseas Chinese ScholarsState Education Ministry
文摘This paper presents an analysis of the active control of random vibration for lami- nated composite plates using piezoelectric fiber reinforced composites (PFRC). With Hamilton's principle and the Rayleigh-Ritz method, the equation of motion for the resulting electromechani- cal coupling system is derived. A velocity feedback control rule is employed to obtain an effective active damping in the suppression of random vibration. The power spectral density and mean- square displacements of the random vibration for laminated plates under different control gains are simulated and the validity of the present control strategy is confirmed. The effect of piezoelec- tric fiber orientation in the PFRC layer on the random vibration suppression is also investigated. The analytical methodology can be expanded to other kinds of random vibration.