Thin-walled structures are sensitive to vibrate under even very small disturbances. In order to design a suitable controller for vibration suppression of thin-walled smart structures, an electro-mechanically coupled f...Thin-walled structures are sensitive to vibrate under even very small disturbances. In order to design a suitable controller for vibration suppression of thin-walled smart structures, an electro-mechanically coupled finite element(FE) model of smart structures is developed based on first-order shear deformation(FOSD) hypothesis. Considering the vibrations generated by various disturbances, which include free and forced vibrations, a PID control is implemented to damp both the free and forced vibrations. Additionally, an LQR optimal control is applied for comparison.The implemented control strategies are validated by a piezoelectric layered smart plate under various excitations.展开更多
Measurements of the excitation power-dependence and temperature-dependence photoluminescence(PL) are performed to investigate the emission mechanisms of In Ga N/Ga N quantum wells(QWs) in laser diode structures. T...Measurements of the excitation power-dependence and temperature-dependence photoluminescence(PL) are performed to investigate the emission mechanisms of In Ga N/Ga N quantum wells(QWs) in laser diode structures. The PL spectral peak is blueshifted with increasing temperature over a certain temperature range. It is found that the blueshift range was larger when the PL excitation power is smaller. This particular behavior indicates that carriers are thermally activated from localized states and partially screen the piezoelectric field present in the QWs. The small blueshift range corresponds to a weak quantum-confined Stark effect(QCSE) and a relatively high internal quantum efficiency(IQE) of the QWs.展开更多
A dual-excited full-wavelength piezoceramic ultrasonic transducer as a cascade of two half-wavelength sandwich piezoceramic transducers is studied.The relevant parameters' expressions of the figure of merit N for the...A dual-excited full-wavelength piezoceramic ultrasonic transducer as a cascade of two half-wavelength sandwich piezoceramic transducers is studied.The relevant parameters' expressions of the figure of merit N for the transducer are derived,and the effects of the structure and material parameters of the transducer on its characteristics are further analyzed by numerical calculation.The results show that when the two piezoceramic stacks are respectively located at the displacement nodes of their own half-wavelength transducers,or the two piezoceramic stacks have the same number of pieces in the case of a certain number of piezoceramic pieces,the figure of merit of the transducer can reach a maximum.With increasing of the number of piezoceramic pieces in a fairly large range,the figure of merit of the transducer slightly decreases,but the force factor of the transducer increases rapidly.The metal materials of the transducer have little effect on its figure of merit.Thus it can be seen that the dual-excited full-wavelength transducer can effectively increase the volumes of the piezoceramic stacks in the case of that the transducer's comprehensive performance has only a little bit of degradation,so it's power capacity and load capability can be dramatically improved,which means the transducer is more suitable for high power and heavy load applications.展开更多
基金supported by the National Natural Science Foundation of China(No.51275413)financial support from the China Scholarship Council of China for the first author(No.2010629003)
文摘Thin-walled structures are sensitive to vibrate under even very small disturbances. In order to design a suitable controller for vibration suppression of thin-walled smart structures, an electro-mechanically coupled finite element(FE) model of smart structures is developed based on first-order shear deformation(FOSD) hypothesis. Considering the vibrations generated by various disturbances, which include free and forced vibrations, a PID control is implemented to damp both the free and forced vibrations. Additionally, an LQR optimal control is applied for comparison.The implemented control strategies are validated by a piezoelectric layered smart plate under various excitations.
基金supported by the National Natural Science Foundation of China(Nos.61334005,51272008,and51102003)the National Basic Research Program of China(No.2012CB619304)
文摘Measurements of the excitation power-dependence and temperature-dependence photoluminescence(PL) are performed to investigate the emission mechanisms of In Ga N/Ga N quantum wells(QWs) in laser diode structures. The PL spectral peak is blueshifted with increasing temperature over a certain temperature range. It is found that the blueshift range was larger when the PL excitation power is smaller. This particular behavior indicates that carriers are thermally activated from localized states and partially screen the piezoelectric field present in the QWs. The small blueshift range corresponds to a weak quantum-confined Stark effect(QCSE) and a relatively high internal quantum efficiency(IQE) of the QWs.
基金supported by the National Natural Science Foundation of China(11304207)the Natural Science Foundation of Guangdong Province(S2012010010402)the Science and Technology R&D funds of Shenzhen(JC201006020762A)
文摘A dual-excited full-wavelength piezoceramic ultrasonic transducer as a cascade of two half-wavelength sandwich piezoceramic transducers is studied.The relevant parameters' expressions of the figure of merit N for the transducer are derived,and the effects of the structure and material parameters of the transducer on its characteristics are further analyzed by numerical calculation.The results show that when the two piezoceramic stacks are respectively located at the displacement nodes of their own half-wavelength transducers,or the two piezoceramic stacks have the same number of pieces in the case of a certain number of piezoceramic pieces,the figure of merit of the transducer can reach a maximum.With increasing of the number of piezoceramic pieces in a fairly large range,the figure of merit of the transducer slightly decreases,but the force factor of the transducer increases rapidly.The metal materials of the transducer have little effect on its figure of merit.Thus it can be seen that the dual-excited full-wavelength transducer can effectively increase the volumes of the piezoceramic stacks in the case of that the transducer's comprehensive performance has only a little bit of degradation,so it's power capacity and load capability can be dramatically improved,which means the transducer is more suitable for high power and heavy load applications.