期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Analysis of piezoelectric semiconductor fibers under gradient temperature changes
1
作者 Shuangpeng LI Ruoran CHENG +1 位作者 Nannan MA Chunli ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期311-320,共10页
Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications ... Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications in multi-functional semiconductor devices.In this paper,a one-dimensional(1D)theoretical model is established to describe the piezotronic responses of a PS fiber under gradient temperature changes.The theoretical model aims to explain the mechanism behind the resistance change caused by such gradient temperature changes.Numerical results demonstrate that a gradient temperature change significantly affects the physical fields within the PS fiber,and can induce changes in its surface resistance.It provides important theoretical guidance on the development of piezotronic devices that are sensitive to temperature effects. 展开更多
关键词 piezoelectric semiconductor(PS)fiber one-dimensional(1D)model piezotronic effect gradient temperature change
下载PDF
Piezoelectric fibers based on silk fibroin with excellent output performance
2
作者 甄文强 陈杰 +1 位作者 范苏娜 张耀鹏 《Chinese Physics B》 SCIE EI CAS 2024年第8期128-135,共8页
The self-powered tissue engineering scaffold with good biocompatibility is of great significance for stimulating nerve cell growth.In this study,silk fibroin(SF)-based fibers with regulatable structure and piezoelectr... The self-powered tissue engineering scaffold with good biocompatibility is of great significance for stimulating nerve cell growth.In this study,silk fibroin(SF)-based fibers with regulatable structure and piezoelectric performance are fabricated by dry-spinning and post-treatment.The concentration of SF and calcium ion in spinning dope and the post-treatment affect the conformation transition and crystallinity of SF.As a result,the SF fibers exhibit high piezoelectric coefficient d_(33)(3.24 pm/V)and output voltage(~27 V).Furthermore,these piezoelectric fibers promote the growth of PC-12 cells,demonstrating the promising potential for nerve repair and other energy harvester. 展开更多
关键词 silk fibroin piezoelectric fiber dry-spinning conformation transition
下载PDF
Application of the homotopy analysis method to nonlinear characteristics of a piezoelectric semiconductor fiber 被引量:1
3
作者 Minghao ZHAO Zelong MA +1 位作者 Chunsheng LU Qiaoyun ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第5期665-676,共12页
Based on the nonlinear constitutive equation,a piezoelectric semiconductor(PSC)fiber under axial loads and Ohmic contact boundary conditions is investigated.The analytical solutions of electromechanical fields are der... Based on the nonlinear constitutive equation,a piezoelectric semiconductor(PSC)fiber under axial loads and Ohmic contact boundary conditions is investigated.The analytical solutions of electromechanical fields are derived by the homotopy analysis method(HAM),indicating that the HAM is efficient for the nonlinear analysis of PSC fibers,along with a rapid rate of convergence.Furthermore,the nonlinear characteristics of electromechanical fields are discussed through numerical results.It is shown that the asymmetrical distribution of electromechanical fields is obvious under a symmetrical load,and the piezoelectric effect is weakened by an applied electric field.With the increase in the initial carrier concentration,the electric potential decreases,and owing to the screen-ing effect of electrons,the distribution of electromechanical fields tends to be symmetrical. 展开更多
关键词 piezoelectric semiconductor(PSC)fiber homotopy analysis method(HAM) nonlinear analysis asymmetrical distribution screening effect
下载PDF
One-step and Continuous Fabrication of Coaxial Piezoelectric Fiber for Sensing Application
4
作者 Shuai-Shuai Gui Bing-Xu Da +4 位作者 Fei Peng Guo-Qiang Zheng Kun Dai Chun-Tai Liu Chang-Yu Shen 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第11期1778-1785,I0009,共9页
Although there has been rapid advancement in piezoelectric sensors,challenges still remain in developing wearable piezoelectric sensors by a one-step,continuous and environmentally friendly method.In this work,a 1D fl... Although there has been rapid advancement in piezoelectric sensors,challenges still remain in developing wearable piezoelectric sensors by a one-step,continuous and environmentally friendly method.In this work,a 1D flexible coaxial piezoelectric fiber was directly fabricated by melt extrusion molding,whose core and sheath layer are respectively slender steel wire(i.e.,electrode)and PVDF(i.e.,piezoelectric layer).Moreover,such 1D flexible coaxial piezoelectric fiber possesses short response time and high sensitivity,which can be used as a selfpowered sensor for bending and vibration sensing.More interestingly,such 1D flexible coaxial piezoelectric fiber(1D-PFs)can be further endowed with 3D helical structure.Moreover,a wearable and washable motion monitoring system can be constructed via braiding such 3D helical piezoelectric fiber(3D-PF)into commercial textiles.This work paves a new way for developing 1D and 3D piezoelectric fibers through a one-step,continuous and environmentally friendly method,showing potential applications in the field of sensing and wearable electronics. 展开更多
关键词 Coaxial piezoelectric fiber Melt extrusion molding Bending and vibration sensing Motion monitoring system
原文传递
Design and Fabrication of a Multi-electrode Metal-core Piezoelectric Fiber and Its Application as an Airflow Sensor 被引量:10
5
作者 Yixiang Bian Yanjun Zhang Xianlong Xia 《Journal of Bionic Engineering》 SCIE EI CSCD 2016年第3期416-425,共10页
Crickets, similar to some other insects, have highly sensitive filiform hairs on their cerci that can detect miniscule changes in airflow. This study imitates the perception mechanism of these filiform sensory hairs o... Crickets, similar to some other insects, have highly sensitive filiform hairs on their cerci that can detect miniscule changes in airflow. This study imitates the perception mechanism of these filiform sensory hairs of crickets by designing and fabricating a Multi-electrode Metal Core Piezoelectric Fiber (MMPF)-based airflow sensor. Four longitudinal conductive sheets were coated symmetrically on their surfaces with Metal-core Piezoceramic Fibers (MPF). The four fan-shaped piezoelectric ceramics with surface electrode covers were polarized. After successful polarization, the cantilevered MMPF could be used as an airflow sensor. The four electrodes on the surface were symmetrically divided into two groups. Therefore, two signals can be produced by a single fiber sensor. The theoretical model of an MMPF airflow sensor has been established. The model indicates that the ratio of the two signals is equivalent to the tangent of the airflow angle. Furthermore, the sum of the squares of the two signals is not dependent on the angle, but reflects the velocity of the airflow. Therefore, a single MMPF can be used to measure both the direction and amplitude for a given airflow. The theoretical model has been confirmed via experimental measurements. 展开更多
关键词 biomimetic sensor piezoelectric fiber airflow sensor artificial hair directional sensitivity
原文传递
Advanced Fiber Materials for Wearable Electronics 被引量:7
6
作者 Chuang Zhu Jiawei Wu +1 位作者 Jianhua Yan Xuqing Liu 《Advanced Fiber Materials》 SCIE EI 2023年第1期12-35,共24页
Fiber materials are highly desirable for wearable electronics that are expected to be flexible and stretchable.Compared with rigid and planar electronic devices,fiber-based wearable electronics provide significant adv... Fiber materials are highly desirable for wearable electronics that are expected to be flexible and stretchable.Compared with rigid and planar electronic devices,fiber-based wearable electronics provide significant advantages in terms of flexibility,stretchability and breathability,and they are considered as the pioneers in the new generation of soft wearables.The con-vergence of textile science,electronic engineering and nanotechnology has made it feasible to build electronic functions on fibers and maintain them during wear.Over the last few years,fiber-shaped wearable electronics with desired designability and integration features have been intensively explored and developed.As an indispensable part and cornerstone of flexible wearable devices,fibers are of great significance.Herein,the research progress of advanced fiber materials is reviewed,which mainly includes various material preparations,fabrication technologies and representative studies on different wearable applications.Finally,key challenges and future directions of fiber materials and wearable electronics are examined along with an analysis of possible solutions. 展开更多
关键词 Conductive fibers piezoelectric fibers SENSORS Artificial muscles Energy harvesting and storage
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部