An interpolation method was used to solve the Volterra integral equation of the second kind caused by interaction among thermal, electric and mechanical fields. The exact expressions for the transient responses of str...An interpolation method was used to solve the Volterra integral equation of the second kind caused by interaction among thermal, electric and mechanical fields. The exact expressions for the transient responses of stresses, electric displacement and electric potential in an orthotropic piezoelectric hollow cylinder were obtained by means of the finite integral transforms. From the sample numerical calculations, it is seen that the present method is suitable for an orthotropic piezoelectric hollow cylinder subjected to arbitrary thermal shock, mechanical load and transient electric excitation. The result can be used as a reference to solve other transient coupled problems of thermo-electro-elasticity.展开更多
文摘An interpolation method was used to solve the Volterra integral equation of the second kind caused by interaction among thermal, electric and mechanical fields. The exact expressions for the transient responses of stresses, electric displacement and electric potential in an orthotropic piezoelectric hollow cylinder were obtained by means of the finite integral transforms. From the sample numerical calculations, it is seen that the present method is suitable for an orthotropic piezoelectric hollow cylinder subjected to arbitrary thermal shock, mechanical load and transient electric excitation. The result can be used as a reference to solve other transient coupled problems of thermo-electro-elasticity.