期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of surface stress and surface-induced stress on behavior of piezoelectric nanobeam 被引量:5
1
作者 Yanmei YUE Kaiyu XU +1 位作者 Xudong ZHANG Wenjing WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第7期953-966,共14页
A new continuum model is developed to study the influence of surface stress on the behaviors of piezoelectric nanobeams. Different from existing piezoelectric surface models which only consider the surface properties,... A new continuum model is developed to study the influence of surface stress on the behaviors of piezoelectric nanobeams. Different from existing piezoelectric surface models which only consider the surface properties, the proposed model takes surfaceinduced initial fields into consideration. Due to the fact that the surface-induced initial fields are totally different under various boundary conditions, two kinds of beams, the doubly-clamped beam and the cantilever beam, are analyzed. Furthermore, boundary conditions can affect not only the initial state of the piezoelectric nanobeam but also the forms of the governing equations. Based on the Euler-Bernoulli beam theory, the nonlin- ear Green-Lagrangian strain-displacement relationship is applied. In addition, the surface area change is also considered in the proposed model. The governing equations of the doubly-clamped and cantilever beams are derived by the energy variation principle. Com- pared with existing Young-Laplace models, the proposed model for the doubly-clamped beam is similar to the Young-Laplace models. However~ the governing equation of the cantilever beam derived by the proposed model is very different from that derived by the Young-Laplace models. The behaviors of piezoelectric nanobeams predicted by these two models Mso have significant discrepancies, which is owing to the surface-induced initial fields in the bulk beam. 展开更多
关键词 surface effect nonlinear strain surface residual stress piezoelectric nanobeam
下载PDF
Vibration analysis of piezoelectric sandwich nanobeam with flexoelectricity based on nonlocal strain gradient theory 被引量:4
2
作者 Shan ZENG Kaifa WANG +1 位作者 Baolin WANG Jinwu WU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第6期859-880,共22页
A nonlocal strain gradient theory(NSGT) accounts for not only the nongradient nonlocal elastic stress but also the nonlocality of higher-order strain gradients,which makes it benefit from both hardening and softening ... A nonlocal strain gradient theory(NSGT) accounts for not only the nongradient nonlocal elastic stress but also the nonlocality of higher-order strain gradients,which makes it benefit from both hardening and softening effects in small-scale structures.In this study, based on the NSGT, an analytical model for the vibration behavior of a piezoelectric sandwich nanobeam is developed with consideration of flexoelectricity. The sandwich nanobeam consists of two piezoelectric sheets and a non-piezoelectric core. The governing equation of vibration of the sandwich beam is obtained by the Hamiltonian principle. The natural vibration frequency of the nanobeam is calculated for the simply supported(SS) boundary, the clamped-clamped(CC) boundary, the clamped-free(CF)boundary, and the clamped-simply supported(CS) boundary. The effects of geometric dimensions, length scale parameters, nonlocal parameters, piezoelectric constants, as well as the flexoelectric constants are discussed. The results demonstrate that both the flexoelectric and piezoelectric constants enhance the vibration frequency of the nanobeam.The nonlocal stress decreases the natural vibration frequency, while the strain gradient increases the natural vibration frequency. The natural vibration frequency based on the NSGT can be increased or decreased, depending on the value of the nonlocal parameter to length scale parameter ratio. 展开更多
关键词 piezoelectric nanobeam sandwich structure flexoelectric nonlocal strain gradient theory(NSGT)
下载PDF
Electro-mechanical coupling wave propagating in a locally resonant piezoelectric/elastic phononic crystal nanobeam with surface effects 被引量:7
3
作者 Denghui QIAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第3期425-438,共14页
The model of a "spring-mass" resonator periodically attached to a piezoelectric/elastic phononic crystal(PC) nanobeam with surface effects is proposed, and the corresponding calculation method of the band st... The model of a "spring-mass" resonator periodically attached to a piezoelectric/elastic phononic crystal(PC) nanobeam with surface effects is proposed, and the corresponding calculation method of the band structures is formulized and displayed by introducing the Euler beam theory and the surface piezoelectricity theory to the plane wave expansion(PWE) method. In order to reveal the unique wave propagation characteristics of such a model, the band structures of locally resonant(LR) elastic PC Euler nanobeams with and without resonators, the band structures of LR piezoelectric PC Euler nanobeams with and without resonators, as well as the band structures of LR elastic/piezoelectric PC Euler nanobeams with resonators attached on PZT-4, with resonators attached on epoxy, and without resonators are compared. The results demonstrate that adding resonators indeed plays an active role in opening and widening band gaps. Moreover, the influence rules of different parameters on the band gaps of LR elastic/piezoelectric PC Euler nanobeams with resonators attached on epoxy are discussed, which will play an active role in the further realization of active control of wave propagations. 展开更多
关键词 locally resonant(LR)piezoelectric/elastic phononic crystal(PC)nanobeam surface effect plane wave expansion(PWE)method spring-mass resonator
下载PDF
Electromechanical buckling behavior of smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal environment 被引量:3
4
作者 Farzad Ebrahimi Mohammad Reza Barati 《International Journal of Smart and Nano Materials》 SCIE EI 2016年第2期69-90,共22页
In the present work,thermo-electro-mechanical buckling behavior of functionally graded piezoelectric(FGP)nanobeams is investi-gated based on higher-order shear deformation beam theory.The FGP nanobeam is subjected to ... In the present work,thermo-electro-mechanical buckling behavior of functionally graded piezoelectric(FGP)nanobeams is investi-gated based on higher-order shear deformation beam theory.The FGP nanobeam is subjected to four types of thermal loading including uniform,linear,and sinusoidal temperature rise as well as heat conduction through the beam thickness.Thermo-electro-mechanical properties of FGP nanobeam are supposed to change continuously in the thickness direction based on power-law model.To consider the influences of small-scale sizes,Eringen’s nonlocal elasticity theory is adopted.Applying Hamilton’s princi-ple,the nonlocal governing equations of an FGP nanobeam in thermal environments are obtained and are solved using Navier-type analytical solution.The significance of various parameters,such as thermal loadings,external electric voltage,power-law index,nonlocal parameter,and slenderness ratio on thermal buck-ling response of size-dependent FGP nanobeams is investigated. 展开更多
关键词 Functionally graded piezoelectric nanobeam thermal buckling nonlocal elasticity theory higher-order beam theory
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部