The development of two-dimensional(2D)semiconductors has attracted widespread attentions in the scientific community and industry due to their ultra-thin thickness,unique structure,excellent optoelectronic properties ...The development of two-dimensional(2D)semiconductors has attracted widespread attentions in the scientific community and industry due to their ultra-thin thickness,unique structure,excellent optoelectronic properties and novel physics.The excellent flexibility and outstanding mechanical strength of 2D semiconductors provide opportunities for fabricated strain-sensitive devices and utilized strain tuning their electronic and optic–electric performance.The strain-engineered one-dimensional materials have been well investigated,while there is a long way to go for 2D semiconductors.In this review,starting with the fundamental theories of piezoelectric and piezoresistive effect resulted by strain,following we reviewed the recent simulation works of strain engineering in novel 2D semiconductors,such as Janus 2D and 2D-Xene structures.Moreover,recent advances in experimental observation of strain tuning PL spectra and transport behavior of 2D semiconductors are summarized.Furthermore,the applications of strain-engineered 2D semiconductors in sensors,photodetectors and nanogenerators are also highlighted.At last,we in-depth discussed future research directions of strain-engineered 2D semiconductor and related electronics and optoelectronics device applications.展开更多
MoO3 nanobelts (NBs) having different properties have been synthesized via a physical vapor deposition (PVD) method. The crystallographic structures and morphologies of the NBs were characterized by X-ray diffract...MoO3 nanobelts (NBs) having different properties have been synthesized via a physical vapor deposition (PVD) method. The crystallographic structures and morphologies of the NBs were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Electrical measurements were performed and the profound piezoresistive effect in MoO3 experimentally studied and verified. Factors that influence the gauge factor, such as NB size, doping concentration and atmosphere composition, are discussed and analyzed. Gas sensing performance was also tested in devices and it was demonstrated that by applying strain to the gas sensor, its sensing performance could be effectively tuned and enhanced. This study provides the first demonstration of significant piezoresistivity in MoO3 NBs and the first illustration of a generic mechanism by means of which this effect can be coupled with other electronic modulation measures to afford better device performance and broader material functionality.展开更多
The experiment results indicate that the gauge factor of highly boron doped polysilicon nanofilm is bigger than that of monocrystalline silicon with the same doping concentration, and increases with the grain size dec...The experiment results indicate that the gauge factor of highly boron doped polysilicon nanofilm is bigger than that of monocrystalline silicon with the same doping concentration, and increases with the grain size decreasing. To apply the unique properties reasonably in the fabrication of piezoresistive devices, it was expounded based on the analysis of energy band structure that the properties were caused by the tunnel current which varies with the strain change forming a tunnelling piezoresistive effect. Finally, a calculation method ofpiezoresistance coefficients around grain boundaries was presented, and then the experiment results ofpolysilicon nanofilms were explained theoretically.展开更多
In the research of 2D flexible tactile sensor matrix,pressure-sensitive conductive rubber was developed and tested in which carbon black was used as its conductive phase and silicon rubber as its matrix layer.Experime...In the research of 2D flexible tactile sensor matrix,pressure-sensitive conductive rubber was developed and tested in which carbon black was used as its conductive phase and silicon rubber as its matrix layer.Experiments were undertaken and the resultant data were used for its piezoresistive characteristics investigation for two kinds of electrode connection configurations,the surface directive connection and embedded connection.It is found that due to the rather strong nonlinearity of the piezoresistive characteristic curves obtained,a higher correlation relationship can be obtained by means of quadratic polynomial fitting.It also showed that the embedded electrode assembling has higher fitting accuracy while the surface directive connection has better mechanical sensitivity.展开更多
The relaxation oscillation characteristics of a resonant tunneling diode (RTD) with applied pressure are reported. The oscillation circuit is simulated and designed by Pspice 8. 0, and the measured oscillation frequ...The relaxation oscillation characteristics of a resonant tunneling diode (RTD) with applied pressure are reported. The oscillation circuit is simulated and designed by Pspice 8. 0, and the measured oscillation frequency is up to 200kHz. Using molecular beam epitaxy (MBE) ,AIAs/lnx Ga1-x As/GaAs double barrier resonant tunneling structures (DBRTS) are grown on (100) semi-insulated (SI) GaAs substrate,and the RTD is processed by Au/Ge/Ni/Au metallization and an airbridge structure. Because of the piezoresistive effect of RTD,with Raman spectrum to measure the applied pressure, the relaxation oscillation characteristics have been studied, which show that the relaxation oscillation frequency has approxi- mately a - 17.9kHz/MPa change.展开更多
The early-age hydration characteristics of composite binder containing graphite powder(GP)with two different finenesses were investigated by determining the hydration heat,thermo gravimetric,morphology of hardened pas...The early-age hydration characteristics of composite binder containing graphite powder(GP)with two different finenesses were investigated by determining the hydration heat,thermo gravimetric,morphology of hardened paste as well as the compressive strength of mortar.The experimental results show that:replacing 2%-6%of cement with graphite powder significantly improves the piezoresistive effect of early age mortar,can be used to monitor accidental loads caused by dropped objects,collisions,or other accident events,and thus avoids initial damage.Some GP provides additional nucleation sites that lead to a fast formation of hydration products(nucleation-site effect).However,due to the almost hydrophobic water contact angle,most of the GP causes a large number of micro-cracks in the hydrated paste(gap effect).Because of the lamellar shape and high surface energy,GP is easily balled and can not be uniformly distributed in the composite,resulting in clumping together and wrapping some of the cement particles(barrier effect).Due to nucleation-site effect,when the dosages of coarse and fine GP reached 2%and 4%,1 d strength were increased by 9.1%and 9.6%,respectively.At 3 days,as the interior damage caused by the gap effect gradually increased,and the retarding effect on cement hydration caused by barrier effect was enhanced.GP has an obvious negative effect on compressive strength.However,micro-cracks caused by fine GP are less,so its negative effect on 3 d compressive strength is lower.展开更多
Two-dimensional transition metal dichalcogenides(TMDs)are needed in highperformance piezoresistive sensors due to their strong strain-induced bandgap modification and thereby large gauge factors.However,integrating a ...Two-dimensional transition metal dichalcogenides(TMDs)are needed in highperformance piezoresistive sensors due to their strong strain-induced bandgap modification and thereby large gauge factors.However,integrating a conventional high-temperature chemical vapor deposition(CVD)-grown TMD with a flexible substrate necessitates a transfer process that inevitably degrades the sensing properties of the TMDs and increases the overall fabrication complexity.We present a high-performance piezoresistive strain sensor that employs largearea PdSe_(2) films grown directly on polyimide(PI)substrates via plasma-assisted selenization of a sputtered Pd film.The reliable strain transfer from the substrate to the PdSe_(2) film ensures an outstanding strain-sensing capability of the sensor.Specifically,the sensors have a gauge factor of up to315±2.1,a response time under 25 ms,a detection limit of 8×10^(-6),and an exceptional stability of over 104 loadingunloading cycles.By attaching the sensors to the skin surface,we demonstrate their application for measuring physiological parameters in health care monitoring,including motion,voice,and arterial pulse vibration.Furthermore,using the PdSe_(2) film sensor combined with deep learning technology,we achieved intelligent recognition of artery temperature from arterial pulse signals with only a 2%difference between predicted and actual temperatures.The excellent sensing performance,together with the advantages of low-temperature fabrication and simple device structure,make the PdSe_(2) film sensor promising for wearable electronics and health care sensing systems.展开更多
Resonant tunnelling diodes (RTDs) have negative differential resistance effect, and the current-voltage characteristics change as a function of external stress, which is regarded as mesc-piezoresistance effect of RT...Resonant tunnelling diodes (RTDs) have negative differential resistance effect, and the current-voltage characteristics change as a function of external stress, which is regarded as mesc-piezoresistance effect of RTDs. In this paper, a novel micro-accelerometer based on AlAs/GaAs/In0.1Ga0.9As/GaAs/AlAs RTDs is designed and fabricated to be a four-beam-mass structure, and an RTD-Wheatstone bridge measurement system is established to test the basic properties of this novel accelerometer. According to the experimental results, the sensitivity of the RTD based micro-accelerometer is adjustable within a range of 3 orders when the bias voltage of the sensor changes. The largest sensitivity of this RTD based miero-accelerometer is 560.2025 mV/g which is about 10 times larger than that of silicon based micro piezoresistive accelerometer, while the smallest one is 1.49135 mV/g.展开更多
A compound multi-functional sensor was designed by the study on the on-line testing technology of wood-based panels, and its properties of shape, functions, size, resistance to special environment were studied in deta...A compound multi-functional sensor was designed by the study on the on-line testing technology of wood-based panels, and its properties of shape, functions, size, resistance to special environment were studied in details. The operational principles of different sensors, technical flow of manufacturing, development of software systems of special functions, and the assessments of technical specification were also be introduced. This sensor adopted many new technologies, such as the applications of piezoresistant effect and heat sensitive effect can effectively measure the pressure and temperature, digital signal processing technology was used to extract and treat signals, and resist interference, encapsulation technology was used to keep the normal run of sensor under a harsh environment. Thus, the on-line compound multi-functional temperature/pressure sensor can be applied better to supervise the production of wood-based panels. All technical specifications of the compound multi-functional sensor were tested and the results met the requirements of the equipments.展开更多
Based on the trap model, the band structure and the conductive mechanism ofpolysilicon were analyzed, and then an equivalent circuit used to interpret the tunneling piezoresistive effect was proposed. Synthesizing the...Based on the trap model, the band structure and the conductive mechanism ofpolysilicon were analyzed, and then an equivalent circuit used to interpret the tunneling piezoresistive effect was proposed. Synthesizing the piezoresistive effect of the grain boundary region and grain neutral zone, a new piezoresistive model--a tunneling piezoresistive model is established. The results show that when the doping concentration is above 10^20 cm^-3, the piezoresistive coefficient of the grain boundary is higher than that of the neutral zone, and it increases with an increase in doping concentration. This reveals the intrinsic mechanism of an important experimental phenomena that the gauge factor of heavily doped polysilicon nano-films increases with an increase in doping concentration.展开更多
This paper reports the piezoresistive effect of a resonant tunneling diode (RTD) in a microstructure. The fourbeam structure is analyzed and fabricated by positing RTDs at the stress sensitive regions. Stress along ...This paper reports the piezoresistive effect of a resonant tunneling diode (RTD) in a microstructure. The fourbeam structure is analyzed and fabricated by positing RTDs at the stress sensitive regions. Stress along the [110] orienta- tion and [110]ientation induces a change in the RTD's current-voltage (I-V) curves,i, e., the meso-piezoresistance variety,mainly in its negative different resistance (NDR) region. By different methods,the mechanic-electric coupling characteristic of RTD is studied and the consistent 10^9Pa^1 piezoresistive coefficients are discovered.展开更多
Two dimensional(2D)materials have attracted extensive research interests due to their excellent properties related to unique structure.Strain engineering,as an important strategy for tuning the lattice and electronic ...Two dimensional(2D)materials have attracted extensive research interests due to their excellent properties related to unique structure.Strain engineering,as an important strategy for tuning the lattice and electronic structure of 2D mate-rials,has been widely used in the modulation of physical properties,which broadens their applications in flexible nanoelectronic and optoelectronic devices.In this review,we fist summari ze the methods of inducing strain to 2D materials and discuss the advantages and problems of various methods.We then introduce the strain induced effects on optical,electrical,and magnetic proper-ties,together with the phase transition of 2D materials.Finally,we ilustrate the potential applications of strained 2D materials and further look forward to their opportunities and challenges in practical applications in the future.展开更多
基金supported by the National Natural Science Foundation of China(51572025,51627801,61435010 and 51702219)the State Key Research Development Program of China(2019YFB2203503)+3 种基金Guangdong Basic and Applied Basic Research Foundation(2019A1515110209)the Science and Technology Innovation Commission of Shenzhen(JCYJ20170818093453105,JCYJ20180305125345378)National Foundation of China(41422050303)Beijing Municipal Science&Technology Commission and the Fundamental Research Funds for Central Universities.
文摘The development of two-dimensional(2D)semiconductors has attracted widespread attentions in the scientific community and industry due to their ultra-thin thickness,unique structure,excellent optoelectronic properties and novel physics.The excellent flexibility and outstanding mechanical strength of 2D semiconductors provide opportunities for fabricated strain-sensitive devices and utilized strain tuning their electronic and optic–electric performance.The strain-engineered one-dimensional materials have been well investigated,while there is a long way to go for 2D semiconductors.In this review,starting with the fundamental theories of piezoelectric and piezoresistive effect resulted by strain,following we reviewed the recent simulation works of strain engineering in novel 2D semiconductors,such as Janus 2D and 2D-Xene structures.Moreover,recent advances in experimental observation of strain tuning PL spectra and transport behavior of 2D semiconductors are summarized.Furthermore,the applications of strain-engineered 2D semiconductors in sensors,photodetectors and nanogenerators are also highlighted.At last,we in-depth discussed future research directions of strain-engineered 2D semiconductor and related electronics and optoelectronics device applications.
文摘MoO3 nanobelts (NBs) having different properties have been synthesized via a physical vapor deposition (PVD) method. The crystallographic structures and morphologies of the NBs were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Electrical measurements were performed and the profound piezoresistive effect in MoO3 experimentally studied and verified. Factors that influence the gauge factor, such as NB size, doping concentration and atmosphere composition, are discussed and analyzed. Gas sensing performance was also tested in devices and it was demonstrated that by applying strain to the gas sensor, its sensing performance could be effectively tuned and enhanced. This study provides the first demonstration of significant piezoresistivity in MoO3 NBs and the first illustration of a generic mechanism by means of which this effect can be coupled with other electronic modulation measures to afford better device performance and broader material functionality.
基金supported by the National Natural Science Foundation of China(No.60776049)the Science and Technology Foundation of Liaoning Province ofChina(No.20072036)the Fund ofLiaoning Province Education Department of China(No.2007T130).
文摘The experiment results indicate that the gauge factor of highly boron doped polysilicon nanofilm is bigger than that of monocrystalline silicon with the same doping concentration, and increases with the grain size decreasing. To apply the unique properties reasonably in the fabrication of piezoresistive devices, it was expounded based on the analysis of energy band structure that the properties were caused by the tunnel current which varies with the strain change forming a tunnelling piezoresistive effect. Finally, a calculation method ofpiezoresistance coefficients around grain boundaries was presented, and then the experiment results ofpolysilicon nanofilms were explained theoretically.
基金Funded by the National Natural Science Foundation of China(No.60672024)National High Technology Research and Development Program of China (No.2007AA04Z220)
文摘In the research of 2D flexible tactile sensor matrix,pressure-sensitive conductive rubber was developed and tested in which carbon black was used as its conductive phase and silicon rubber as its matrix layer.Experiments were undertaken and the resultant data were used for its piezoresistive characteristics investigation for two kinds of electrode connection configurations,the surface directive connection and embedded connection.It is found that due to the rather strong nonlinearity of the piezoresistive characteristic curves obtained,a higher correlation relationship can be obtained by means of quadratic polynomial fitting.It also showed that the embedded electrode assembling has higher fitting accuracy while the surface directive connection has better mechanical sensitivity.
文摘The relaxation oscillation characteristics of a resonant tunneling diode (RTD) with applied pressure are reported. The oscillation circuit is simulated and designed by Pspice 8. 0, and the measured oscillation frequency is up to 200kHz. Using molecular beam epitaxy (MBE) ,AIAs/lnx Ga1-x As/GaAs double barrier resonant tunneling structures (DBRTS) are grown on (100) semi-insulated (SI) GaAs substrate,and the RTD is processed by Au/Ge/Ni/Au metallization and an airbridge structure. Because of the piezoresistive effect of RTD,with Raman spectrum to measure the applied pressure, the relaxation oscillation characteristics have been studied, which show that the relaxation oscillation frequency has approxi- mately a - 17.9kHz/MPa change.
基金by the National Natural Science Foundation of China(Nos.52208413 and 51908022)the R&D Program of Beijing Municipal Education Commission(Nos.KM202210016011 and KM202110016013)。
文摘The early-age hydration characteristics of composite binder containing graphite powder(GP)with two different finenesses were investigated by determining the hydration heat,thermo gravimetric,morphology of hardened paste as well as the compressive strength of mortar.The experimental results show that:replacing 2%-6%of cement with graphite powder significantly improves the piezoresistive effect of early age mortar,can be used to monitor accidental loads caused by dropped objects,collisions,or other accident events,and thus avoids initial damage.Some GP provides additional nucleation sites that lead to a fast formation of hydration products(nucleation-site effect).However,due to the almost hydrophobic water contact angle,most of the GP causes a large number of micro-cracks in the hydrated paste(gap effect).Because of the lamellar shape and high surface energy,GP is easily balled and can not be uniformly distributed in the composite,resulting in clumping together and wrapping some of the cement particles(barrier effect).Due to nucleation-site effect,when the dosages of coarse and fine GP reached 2%and 4%,1 d strength were increased by 9.1%and 9.6%,respectively.At 3 days,as the interior damage caused by the gap effect gradually increased,and the retarding effect on cement hydration caused by barrier effect was enhanced.GP has an obvious negative effect on compressive strength.However,micro-cracks caused by fine GP are less,so its negative effect on 3 d compressive strength is lower.
基金National Natural Science Foundation of China,Grant/Award Numbers:61975024,62074024Natural Science Foundation of Sichuan Province,Grant/Award Number:2022NSFSC0042Sichuan Science and Technology Program,Grant/Award Numbers:2023NSFSC0365,2023YFH0090。
文摘Two-dimensional transition metal dichalcogenides(TMDs)are needed in highperformance piezoresistive sensors due to their strong strain-induced bandgap modification and thereby large gauge factors.However,integrating a conventional high-temperature chemical vapor deposition(CVD)-grown TMD with a flexible substrate necessitates a transfer process that inevitably degrades the sensing properties of the TMDs and increases the overall fabrication complexity.We present a high-performance piezoresistive strain sensor that employs largearea PdSe_(2) films grown directly on polyimide(PI)substrates via plasma-assisted selenization of a sputtered Pd film.The reliable strain transfer from the substrate to the PdSe_(2) film ensures an outstanding strain-sensing capability of the sensor.Specifically,the sensors have a gauge factor of up to315±2.1,a response time under 25 ms,a detection limit of 8×10^(-6),and an exceptional stability of over 104 loadingunloading cycles.By attaching the sensors to the skin surface,we demonstrate their application for measuring physiological parameters in health care monitoring,including motion,voice,and arterial pulse vibration.Furthermore,using the PdSe_(2) film sensor combined with deep learning technology,we achieved intelligent recognition of artery temperature from arterial pulse signals with only a 2%difference between predicted and actual temperatures.The excellent sensing performance,together with the advantages of low-temperature fabrication and simple device structure,make the PdSe_(2) film sensor promising for wearable electronics and health care sensing systems.
基金supported in part by the National Natural Science Foundation of China (Grant No 50775209)the Fork Ying Tung Education Foundation (Grant No 101052)Program for Excellent Talents by Ministry of Education of China
文摘Resonant tunnelling diodes (RTDs) have negative differential resistance effect, and the current-voltage characteristics change as a function of external stress, which is regarded as mesc-piezoresistance effect of RTDs. In this paper, a novel micro-accelerometer based on AlAs/GaAs/In0.1Ga0.9As/GaAs/AlAs RTDs is designed and fabricated to be a four-beam-mass structure, and an RTD-Wheatstone bridge measurement system is established to test the basic properties of this novel accelerometer. According to the experimental results, the sensitivity of the RTD based micro-accelerometer is adjustable within a range of 3 orders when the bias voltage of the sensor changes. The largest sensitivity of this RTD based miero-accelerometer is 560.2025 mV/g which is about 10 times larger than that of silicon based micro piezoresistive accelerometer, while the smallest one is 1.49135 mV/g.
基金This project was supported by China Postdoctoral Science Funds, Jiangsu Planned Projects for Postdoctoral Research Funds and Northeast Forestry University Research Funds.
文摘A compound multi-functional sensor was designed by the study on the on-line testing technology of wood-based panels, and its properties of shape, functions, size, resistance to special environment were studied in details. The operational principles of different sensors, technical flow of manufacturing, development of software systems of special functions, and the assessments of technical specification were also be introduced. This sensor adopted many new technologies, such as the applications of piezoresistant effect and heat sensitive effect can effectively measure the pressure and temperature, digital signal processing technology was used to extract and treat signals, and resist interference, encapsulation technology was used to keep the normal run of sensor under a harsh environment. Thus, the on-line compound multi-functional temperature/pressure sensor can be applied better to supervise the production of wood-based panels. All technical specifications of the compound multi-functional sensor were tested and the results met the requirements of the equipments.
基金supported by the National Natural Science Foundation of China(No.60776049)the Science and Technology Foundation of Liaoning Province(No.20072036)the Fund of Liaoning Province Education Department(No.2007T130)
文摘Based on the trap model, the band structure and the conductive mechanism ofpolysilicon were analyzed, and then an equivalent circuit used to interpret the tunneling piezoresistive effect was proposed. Synthesizing the piezoresistive effect of the grain boundary region and grain neutral zone, a new piezoresistive model--a tunneling piezoresistive model is established. The results show that when the doping concentration is above 10^20 cm^-3, the piezoresistive coefficient of the grain boundary is higher than that of the neutral zone, and it increases with an increase in doping concentration. This reveals the intrinsic mechanism of an important experimental phenomena that the gauge factor of heavily doped polysilicon nano-films increases with an increase in doping concentration.
文摘This paper reports the piezoresistive effect of a resonant tunneling diode (RTD) in a microstructure. The fourbeam structure is analyzed and fabricated by positing RTDs at the stress sensitive regions. Stress along the [110] orienta- tion and [110]ientation induces a change in the RTD's current-voltage (I-V) curves,i, e., the meso-piezoresistance variety,mainly in its negative different resistance (NDR) region. By different methods,the mechanic-electric coupling characteristic of RTD is studied and the consistent 10^9Pa^1 piezoresistive coefficients are discovered.
基金the National Natural Science Foundation of China,Grant/AwardNumbers:51520105002,51972007。
文摘Two dimensional(2D)materials have attracted extensive research interests due to their excellent properties related to unique structure.Strain engineering,as an important strategy for tuning the lattice and electronic structure of 2D mate-rials,has been widely used in the modulation of physical properties,which broadens their applications in flexible nanoelectronic and optoelectronic devices.In this review,we fist summari ze the methods of inducing strain to 2D materials and discuss the advantages and problems of various methods.We then introduce the strain induced effects on optical,electrical,and magnetic proper-ties,together with the phase transition of 2D materials.Finally,we ilustrate the potential applications of strained 2D materials and further look forward to their opportunities and challenges in practical applications in the future.