[Objectives]This study aimed to optimize the chelation process for complex microelement iron supplement derived from pig blood by response surface methodology.[Methods]On the basis of single-factor test,p H value,conc...[Objectives]This study aimed to optimize the chelation process for complex microelement iron supplement derived from pig blood by response surface methodology.[Methods]On the basis of single-factor test,p H value,concentration of polypeptide solution and volume ratio of polypeptide solution to FeCl_2 solution were selected as influencing factors with Fe(II)chelation rate as the indicator for Box-Behnken central composite experimental design with three factors and three levels.The effects of three factors on the response value were analyzed by response surface methodology.[Results]The optimized chelation process for complex microelement iron supplement derived from pig blood by response surface methodology was as follows:pH 5.40,polypeptide solution concentration 2.27%,volume ratio of polypeptide solution to FeCl_2 solution 2.16∶1.Under this condition,the predictive Fe(II)chelation rate of iron supplement was 79.37%,while the actual value was 79.41%.[Conclusions]The optimized process may provide new thoughts for the development and utilization of complex microelement iron supplement derived from pig blood.展开更多
基金Supported by Youth Fund of National Natural Science Foundation of China(31801673)Talent Development Fund of Anhui Academy of Agricultural Sciences(17F1205)+2 种基金Youth Innovation Fund of President of Anhui Academy of Agricultural Sciences(17B1220)Team Building Project of Anhui Academy of Agricultural Sciences(18C1225)Youth Fund of Natural Science Foundation of Anhui Province(1808085QC94)
文摘[Objectives]This study aimed to optimize the chelation process for complex microelement iron supplement derived from pig blood by response surface methodology.[Methods]On the basis of single-factor test,p H value,concentration of polypeptide solution and volume ratio of polypeptide solution to FeCl_2 solution were selected as influencing factors with Fe(II)chelation rate as the indicator for Box-Behnken central composite experimental design with three factors and three levels.The effects of three factors on the response value were analyzed by response surface methodology.[Results]The optimized chelation process for complex microelement iron supplement derived from pig blood by response surface methodology was as follows:pH 5.40,polypeptide solution concentration 2.27%,volume ratio of polypeptide solution to FeCl_2 solution 2.16∶1.Under this condition,the predictive Fe(II)chelation rate of iron supplement was 79.37%,while the actual value was 79.41%.[Conclusions]The optimized process may provide new thoughts for the development and utilization of complex microelement iron supplement derived from pig blood.