期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Applications of Ultrasonic Detection Technology in Bridge Concrete Pile Foundation Detection
1
作者 Wei Fu 《Journal of World Architecture》 2023年第6期45-50,共6页
In this paper,the application strategy of ultrasonic detection technology in the detection of concrete foundation piles is analyzed using a construction project as an example.It includes a basic overview of the projec... In this paper,the application strategy of ultrasonic detection technology in the detection of concrete foundation piles is analyzed using a construction project as an example.It includes a basic overview of the project,an overview of ultrasonic testing technology in bridge concrete pile foundation testing,and an analysis of its practical application in the concrete pile foundation testing of this project.The objective of this analysis is to provide some reference for the application of ultrasonic testing technology and the improvement of the quality of bridge concrete pile foundation testing. 展开更多
关键词 Bridge engineering concrete pile foundation Ultrasonic detection technology Ultrasonic detection principle
下载PDF
Quantitative analysis of magnetic anomaly of reinforcements in bored in-situ concrete piles 被引量:3
2
作者 Sun Bin Dong Ping Wang Chong Pu Xiaoxuan Wu Yongjing 《Applied Geophysics》 SCIE CSCD 2009年第3期275-286,301,共13页
We quantitatively study magnetic anomalies of reinforcement rods in bored insitu concrete piles for the first time and summarized their magnetic anomaly character. Key factors such as measuring borehole orientation, b... We quantitatively study magnetic anomalies of reinforcement rods in bored insitu concrete piles for the first time and summarized their magnetic anomaly character. Key factors such as measuring borehole orientation, borehole-reinforcement distance, and multiple-section reinforcement rods are discussed which contributes valid and quantitative reference for using the magnetic method to detect reinforcement rods. Through tests with model piles, we confirm the accuracy of theoretical computations and then utilize the law discovered in theoretical computations to explain the characteristics of the actual testing curves. The results show that the Za curves of the reinforcement rod reflect important factors regarding the reinforcement rods, such as rod length, change of reinforcement ratio, length of overlap, and etc. This research perfects the magnetic method for detecting reinforcement rods in bored in-situ concrete piles and the method has great importance for preventing building contractor fraud. 展开更多
关键词 Applied geophysics concrete piles reinforcement rods magnetic method
下载PDF
Deformation and failure modes of composite foundation with sub-embankment plain concrete piles 被引量:2
3
作者 Qian Su JunJie Huang 《Research in Cold and Arid Regions》 CSCD 2013年第5期614-625,共12页
With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on... With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on soft subgrade. Among several im- provement pattems, plain concrete piles have been extensively used to treat soft ground supported embankment. To investigate the deformation and failure modes of unimproved soft ground and soft ground reinforced by sub-embankment plain concrete piles, and to learn the influences of track and vehicle load, the effect of pile spacing, as well as the compression moduli of soil layers and upper load condition on the failure modes, a series of centrifuge model tests were performed. Test results indicate that the dis- placement of unimproved soft ground under the embankment increases continuously as embankment, track and train loading, and slip circle failure takes place. The deformation law of soft ground reinforced by sub-embankment plain concrete piles depends on pile spacing, compression modulus of the soft ground, and loading conditions. It was also found that plain concrete piles show displacement and failure patterns depending on its location, compression modulus of soft soil around the pile, and loading condi- tions. Furthermore, the evaluation of improved ground stability as well as the model test procedure is also presented. 展开更多
关键词 centrifuge model test composite foundation plain concrete pile deformation and failure modes EMBANKMENT soft ground
下载PDF
Physical modeling of behaviors of cast-in-place concrete piled raft compared to free-standing pile group in sand 被引量:1
4
作者 Mehdi Sharafkhah Issa Shooshpasha 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第4期703-716,共14页
Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies i... Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies indicated that this method is too conservative. Only when the pile cap is elevated from the ground level,the raft bearing contribution can be neglected. In a piled raft foundation, pileesoileraft interaction is complicated. Although several numerical studies have been carried out to analyze the behaviors of piled raft foundations, very few experimental studies are reported in the literature. The available laboratory studies mainly focused on steel piles. The present study aims to compare the behaviors of piled raft foundations with free-standing pile groups in sand, using laboratory physical models. Cast-in-place concrete piles and concrete raft are used for the tests. The tests are conducted on single pile, single pile in pile group, unpiled raft, free-standing pile group and piled raft foundation. We examine the effects of the number of piles, the pile installation method and the interaction between different components of foundation. The results indicate that the ultimate bearing capacity of the piled raft foundation is considerably higher than that of the free-standing pile group with the same number of piles. With installation of the single pile in the group, the pile bearing capacity and stiffness increase. Installation of the piles beneath the raft decreases the bearing capacity of the raft. When the raft bearing capacity is not included in the design process, the allowable bearing capacity of the piled raft is underestimated by more than 200%. This deviation intensifies with increasing spacing of the piles. 展开更多
关键词 Free-standing pile group piled raft pileesoileraft interaction Physical modeling Cast-in-place concrete piles
下载PDF
Uplift behavior and load transfer mechanism of prestressed high-strength concrete piles 被引量:1
5
作者 赖颖 金国芳 《Journal of Central South University》 SCIE EI CAS 2010年第1期136-141,共6页
Prestressed high-strength-concrete (PHC) tube-shaped pile is one of the recently used foundations for soft soil. The research on uplift resistance of PHC pile is helpful to the design of pile foundations. A field-scal... Prestressed high-strength-concrete (PHC) tube-shaped pile is one of the recently used foundations for soft soil. The research on uplift resistance of PHC pile is helpful to the design of pile foundations. A field-scale test program was conducted to study the uplift behavior and load transfer mechanism of PHC piles in soft soil. The pullout load tests were divided into two groups with different diameters, and there were three piles in each group. A detailed discussion of the axial load transfer and pile skin resistance distribution was also included. It is found from the tests that the uplift capacity increases with increasing the diameter of pile. When the diameter of piles increases from 500 to 600 mm, the uplift load is increased by 51.2%. According to the load-displacement (Q-S) curves, all the piles do not reach the ultimate state at the maximum load. The experimental results show that the piles still have uplift bearing capacity. 展开更多
关键词 prestresed high-strength concrete piles full-scale test uplift capacity load transfer mechanism
下载PDF
High-frequency interference waves in low strain dynamic testing of X-section concrete piles 被引量:1
6
作者 Qu Liming Fan Yuming +2 位作者 Ding Xuanming Yang Changwei Zhang Yanling 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第4期877-885,共9页
Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed ... Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed with undesired interference components,often featuring as high-frequency fluctuations.Previous studies have revealed that sectional geometry(shape and size)greatly affects the high-frequency interference.In this study,low strain dynamic testing on full-scale X-section concrete is conducted in order to investigate the influences of high-frequency interference on velocity responses at the pile head.Emphasis is placed on the frequency and peak value of interference waves at various receiving points.Additionally,the effects of the geometrical,and mechanical properties of the pile shaft on high-frequency interference are elaborated on through the three-dimensional finite element method.The results show that the measured wave is obscured by interference waves superposed by two types of high-frequency components.The modulus and cross-sectional area are contributing factors to the frequency and peak value of the interference waves.On the other hand,the position with the least interference is determined,to some extent,by the accurate shape of the X-section. 展开更多
关键词 low strain dynamic testing X-section concrete pile high-frequency interference full-scale model test finite element method
下载PDF
Key technology for construction of connection between steel pylonand concrete pile cap of middle pylon of Taizhou Bridge 被引量:1
7
作者 Sun Yuxiang Zhang Hong +2 位作者 Xiao Wenfu Huang Tao You Xinpeng 《Engineering Sciences》 EI 2012年第3期8-11,共4页
Taizhou Bridge is a suspension bridge with three pylons and two 1 080 m main spans. The middle pylon is a steel frame with longitudinal herringbone shape and lateral gate shape. The connection between steel pylon and ... Taizhou Bridge is a suspension bridge with three pylons and two 1 080 m main spans. The middle pylon is a steel frame with longitudinal herringbone shape and lateral gate shape. The connection between steel pylon and concrete pile cap is a key part to transfer the huge inner force from the pylon to the foundation. Its construction quality is a critical factor to the overall structural loading of the whole bridge ; therefore the contact ratio between the bearing steel plate of pylon and concrete pile cap is required to be over 75 %. The inclined joint surface in two directions, longitudinally at 39/1 920 and laterally at 1/4, posted a challenge to the construction work. A procedure test was carried out to find an optimal construction method by comparison, and finally the post-injection method was selected as it can meet the requirement of concrete strength and contact ratio at the connection. The successful application of the post-injection method in Taizhou Bridge can nrovide an examnle and reference for similar nroiects in the future. 展开更多
关键词 middle pylon CONNECTION steel pylon concrete pile cap contact ratio post-injection method
下载PDF
Bearing Behavior of Cast-in-Place Expansive Concrete Pile in Coral Sand Under Vertical Loading
8
作者 DING Xuan-ming DENG Wei-ting +2 位作者 PENG Yu ZHOU Hang WANG Chun-yan 《China Ocean Engineering》 SCIE EI CSCD 2021年第3期352-360,共9页
The low side friction of piles in coral sand results in the low bearing capacity of foundations.In this paper,expansive concrete pile is utilized to improve the bearing capacity of pile foundations in coral sand.Both ... The low side friction of piles in coral sand results in the low bearing capacity of foundations.In this paper,expansive concrete pile is utilized to improve the bearing capacity of pile foundations in coral sand.Both model tests and numerical simulation are performed to reveal the bearing mechanism of expansive concrete pile in coral sand.Results showed that the lateral earth pressure near pile increases obviously and the side friction of piles is improved,after adding expansion agent to the concrete.The horizontal linear expansion is 1.11%and the bearing capacity increased 41%for the pile,when 25%expansion agent is added.Results in finite element numerical simulation also show that ultimate bearing capacity increases with the increase of the linear expansion ratio.Besides,the area for obvious increase in side friction is below the surface of soil about three times the pile diameter,and the expansion leads to a high side friction sharing of the pile.Therefore,the cast-in-place expansive concrete pile is effective in improving the bearing capacity of piles in coral sand. 展开更多
关键词 bearing behavior expansive concrete pile coral sand side friction numerical simulation
下载PDF
Study on Interface mechanical behavior of steel tube reinforced concrete composite pile
9
作者 ZHAO Jiehao 《International English Education Research》 2016年第4期93-94,共2页
Currently for the steel tube reinforced concrete composite pile research, although predecessors make a comprehensive research on the composite pile beating performance, design technology, but there are still many prob... Currently for the steel tube reinforced concrete composite pile research, although predecessors make a comprehensive research on the composite pile beating performance, design technology, but there are still many problems have not been solved, such as the steel tube reinforced concrete pile composite interracial force learn performance research is still in the initial stage. In this paper, we mainly discuss the research methods of several interface mechanical properties and propose the possibility of studying the mechanical properties of the steel tube reinforced concrete composite pile by using the principle of ultrasonic speckle. 展开更多
关键词 Steel tube reinforced concrete composite pile Interface mechanical properties research methods
下载PDF
Influence of the penetration of adjacent X-section cast-in-place concrete(XCC)pile on the existing XCC pile in sand
10
作者 Peng ZHOU Jianhui XU +3 位作者 Changjie XU Guangwei CAO Jie CUP Xuanming DING 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第7期557-572,共16页
A series of small-scale 1g X-section cast-in-place concrete(XCC)pile-penetration model tests were conducted to study the effects of soil density and pile geometry on the lateral responses of an existing pile and the v... A series of small-scale 1g X-section cast-in-place concrete(XCC)pile-penetration model tests were conducted to study the effects of soil density and pile geometry on the lateral responses of an existing pile and the variations in surrounding soil stress.The results showed that the bending patterns of existing XCC piles varied with penetration depth.The lateral response of the existing pile was sensitive to the change in relative density and pile geometry.For example,the bending moment of the existing pile increased along with these parameters.The development of the radial stressσ′r/σ′v0 of the soil around an existing pile showed different trends at various depths during the penetration of the adjacent pile.Moreover,the change in radial stress during the penetration of the XCC pile did not exhibit the“h/R effect”that was observed in the free-field soil,due to the shielding effect of the existing piles.The peak value of radial stressσ′r_max/σ′v0 decreased exponentially as the radial distance r/R increased.The attenuation ofσ′r_max/σ′v0 with r/R in the loose sand was faster than in the medium-dense or dense sands.Theσ′r_max/σ′v0 at the same soil location increased with the cross-section geometry parameter. 展开更多
关键词 X-section cast-in-place concrete(XCC)pile Test PENETRATION SAND Lateral response Radial stress
原文传递
Comparison between bearing characteristics of pervious concrete pile composite foundations with different replacement ratios
11
作者 Han Xia Guangyin Du +1 位作者 Jun Cai Changshen Sun 《Geohazard Mechanics》 2023年第3期255-261,共7页
The replacement ratio is an essential factor in evaluating the bearing capacity characteristics of compositefoundations. This study focuses on the bearing capacity of a pervious concrete pile with different replacemen... The replacement ratio is an essential factor in evaluating the bearing capacity characteristics of compositefoundations. This study focuses on the bearing capacity of a pervious concrete pile with different replacementratios. The axial force, skin friction, and settlement were evaluated using a model test to assess the performance ofthe pervious concrete pile composite foundation. When the replacement ratio was reduced from 9.26% to 2.32%,the characteristic bearing capacity value was only 14%. Therefore, it may be unreasonable to use the settlementratio method to evaluate this composite foundation's bearing capacity in a model test. Appropriate loading cansignificantly improve the bearing capacity of a pervious concrete pile composite foundation with a lowreplacement ratio. The pile–soil stress ratio exhibited different decreasing ranges in the later loading stage. As theload increased, the axial force of the pervious concrete piles was small and nonobvious, and the average sidefriction resistance of the piles in the foundation with a lower replacement ratio slowly increased. 展开更多
关键词 Pervious concrete piles Model test Replacement ratios Bearing capacity
原文传递
Construction Technology of Deep Foundation Pit Support in Municipal Civil Engineering Foundation Construction
12
作者 Jun Huang 《Journal of Architectural Research and Development》 2023年第5期20-26,共7页
Municipal civil engineering is the key content of municipal construction,and the construction scale is usually large.The quality of the project plays an important role in the development of urban economy.Due to the ra... Municipal civil engineering is the key content of municipal construction,and the construction scale is usually large.The quality of the project plays an important role in the development of urban economy.Due to the rapid increase of high-rise buildings,skyscrapers and underground buildings,the construction technology of deep foundation pit support has gradually become an indispensable construction technology.Therefore,the selection of foundation pit support construction technology is crucial in ensuring that whether the foundation is firm and stable,and whether the subsequent construction activities can be carried out smoothly.In view of this,the article discusses the application of deep foundation pit support construction technology in municipal civil engineering,aiming to provide reference for subsequent projects. 展开更多
关键词 Deep foundation pit support Civil engineering Foundation construction concrete pouring pile technology Row pile support technology
下载PDF
Effect of soil set-up on the capacity of jacked concrete pipe piles in mixed soils 被引量:3
13
作者 Jun-wei LIU Zhong-miao ZHANG Feng YU Cun-gang LIN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2011年第8期637-644,共8页
The increase in capacity of displacement piles with time after installation is typically known as soil/pile set-up. A full-scale field test is carried out to observe the set-up effect for open-ended concrete pipe pile... The increase in capacity of displacement piles with time after installation is typically known as soil/pile set-up. A full-scale field test is carried out to observe the set-up effect for open-ended concrete pipe piles jacked into mixed soils. Both the total capacity and the average unit shaft resistance increase approximately linearly with logarithmic time. The average increase rate for unit shaft resistance is 44% per log cycle, while the average increase for total capacity is approximately 21%. A review on case histories for long-term set-up indicates an average set-up rate of approximately 40%. Based on this, the mechanism of pile set-up is discussed in detail and a three-phase model is suggested. 展开更多
关键词 concrete pipe pile Jack piling SET-UP pile capacity
原文传递
Complex variable solution for boundary value problem with X-shaped cavity in plane elasticity and its application* 被引量:3
14
作者 Hang ZHOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第9期1329-1346,共18页
A new type of displacement pile, the X-section cast-in-place concrete (XCC) pile, has recently been developed in China. Extensive field tests and laboratory experi- ments are undertaken to evaluate its performance a... A new type of displacement pile, the X-section cast-in-place concrete (XCC) pile, has recently been developed in China. Extensive field tests and laboratory experi- ments are undertaken to evaluate its performance and quantify the non-uniform deforma- tion effect (NUDE) of the X-shaped cross section during installation. This paper develops a simplified theoretical model that attempts to capture the NUDE. Based on the theory of complex variable plane elasticity, closed-form solutions of the stress and displacement for the X-shaped cavity boundary value problem are given. Subsequently, the analytical solution is used to evaluate the NUDE, the concrete filling index (CFI), and the perimeter reduction coefficient of the XCC pile cross section. The computed results are compared with field test results, showing reasonable agreement. The present simplified theoretical model reveals the deformation mechanism of the X-shaped cavity and facilitates applica- tion of the newly developed XCC pile technique in geotechnical engineering. 展开更多
关键词 complex variable solution boundary value problem plane elasticity X-section cast-in-place concrete (XCC) pile deformation mechanism theoretical study
下载PDF
On composite foundation with different vertical reinforcing elements under vertical loading:a physical model testing study 被引量:2
15
作者 Xian-zhi WANG Jun-jie ZHENG Jian-hua YIN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第2期80-87,共8页
Aphysical model facility was designed, built, and setup for conducting model tests on a composite foundation in a soil ground. The model tests were carried out on a composite foundation with different combinations of ... Aphysical model facility was designed, built, and setup for conducting model tests on a composite foundation in a soil ground. The model tests were carried out on a composite foundation with different combinations of vertical reinforcement elements in the same soil ground. Via the analysis of the collected data the characteristics of the composite foundation with different reinforcing elements were obtained, including the characteristics of load-settlement curves, column stresses, stresses of the intercolumn soil, pile-soil stress ratio, and load-sharing ratios of columns and soil. Results from the model tests reveal the mechanism of a composite foundation with different reinforcing elements quantitatively. It is concluded that both a composite foundation with a combination of steel pipe pile and sand column and that with a combination of concrete pile and lime column have a higher bearing capacity than the composite foundation with only sand columns with the same conditions of soil ground and loading. A composite foundation with lime column and sand column embodies no much better performance than that with sand colunms only. 展开更多
关键词 Steel pipe pile concrete pile Lime column Sand column Composite foundation Model test pile-soil stress ratio
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部