The seismic behavior of tall buildings can he greatly affected by non-linear soil-pile interaction during strong earthquakes.In this study a 20-storey building is examined as a typical structure supported on a pile fo...The seismic behavior of tall buildings can he greatly affected by non-linear soil-pile interaction during strong earthquakes.In this study a 20-storey building is examined as a typical structure supported on a pile foundation for different conditions:(1) rigid base,i.e.no deformation in the foundation:(2) linear soil-pile system;and (3) nonlinear soil-pile system. The effects of pile foundation displacements on the behavior of tall building are investigated,and compared with the behavior of buildings supported on shallow foundation.With a model of non-reflective boundary between the near field and far field, Novak's method of soil-pile interaction is improved.The computation method for vibration of pile foundations and DYNAN computer program are introduced comprehensively.A series of dynamic experiments have been done on full-scale piles, including single pile and group,linear vibration and nonlinear vibration,to verify the validity of boundary zone model.展开更多
This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a...This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a horizontally saturated sand layer overlaid with a silty clay layer, with the simulated low-cap pile groups embedded. The container was excited in three E1 Centro earthquake events of different levels. Test results indicate that excessive pore pressure (EPP) during slight shaking only slightly accumulated, and the accumulation mainly occurred during strong shaking. The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased. The acceleration response of the sand was remarkably influenced by soil liquefaction. As soil liquefaction occurred, the peak sand displacement gradually lagged behind the input acceleration; meanwhile, the sand displacement exhibited an increasing effect on the bending moment of the pile, and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top. A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events. It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.展开更多
This paper describes a quasi-static test program featuring lateral cyclic loading on single piles in sandy soil. The tests were conducted on 18 aluminum model piles with different cross sections and lateral load eccen...This paper describes a quasi-static test program featuring lateral cyclic loading on single piles in sandy soil. The tests were conducted on 18 aluminum model piles with different cross sections and lateral load eccentricity ratios, e/d, (e is the lateral load eccentricity and d is the diameter of pile) of 0, 4 and 8, embedded in sand with a relative density of 30% and 70%. The experimental results include lateral load-displacement hysteresis loops, skeleton curves and energy dissipation curves. Lateral capacity, ductility and energy dissipation capacity of single piles under seismic load were evaluated in detail. The lateral capacities and the energy dissipation capacity of piles in dense sand were much higher than in loose sand. When embedded in loose sand, the maximum lateral load and the maximum lateral displacement of piles increased as e/d increased. On the contrary, when embedded in dense sand, the maximum lateral load of piles decreased as e/d increased. Piles with a higher load eccentricity ratio experienced higher energy dissipation capacity than piles with e/d of 0 in both dense and loose sand. At a given level of displacement, piles with circular cross sections provided the best energy dissipation capacity in both loose and dense sand.展开更多
Soil underneath a structure might affect the behavior and the overall response of the structure in seismic events. The role of loose soil conditions and the inclusion of soil-structure interaction (SSI) in the analysi...Soil underneath a structure might affect the behavior and the overall response of the structure in seismic events. The role of loose soil conditions and the inclusion of soil-structure interaction (SSI) in the analysis are important issues that need to be addressed. Since steel structures are light, two configurations designed as spatial and perimeter are considered to study the effect of soil on the steel structural frames for the same building. The paper provides a parametric analysis on the influence of SSI on the overall performance of MRFs (Moment Resisting Frames) according to the provisions of Saudi Building Code (SBC) [1]. A case study has been developed in which spatial and perimeter moment resisting frames of 12, 6 and 3 stories residential buildings are designed using Saudi Building Code (SBC) prescriptions. A modal response spectrum analysis has been carried out to see the influence of SSI on the fundamental period of vibration, top story displacement and inter-story drift limitations. Moreover, a static non-linear analysis has been performed to investigate the performance of frames, thus allowing to identify the influence of SSI on the structural design of steel MRFs.展开更多
为拓展核电厂的选址范围,有必要对非基岩场地桩基情形的核电结构进行地震安全性评估。在目前的桩-土-结构相互作用分析方法中,Winkler地基梁模型以及p-y法都将桩-土-结构相互作用问题进行了简化,难以反映复杂地基情形。整体有限元法可...为拓展核电厂的选址范围,有必要对非基岩场地桩基情形的核电结构进行地震安全性评估。在目前的桩-土-结构相互作用分析方法中,Winkler地基梁模型以及p-y法都将桩-土-结构相互作用问题进行了简化,难以反映复杂地基情形。整体有限元法可考虑复杂地基情形,但计算量较大,效率较低。本文基于高效的三维时域土-结构相互作用分区分析(Partitioned Analysis of Soil-Structure Interaction,PASSI)方法,实现桩基与土体分别采用不同时间步距的计算方法,避免土体采用桩基相对较小的时间步距而增加不必要的计算量。本文以AP1000核岛结构作为研究对象,建立了桩-土-核电结构相互作用的三维有限元模型并对其进行分析。通过输入脉冲波验证了该异步算法的有效性,并结合运动相互作用和惯性相互作用,分析了桩身最大剪力和最大弯矩的特点。分析了桩-土-核电结构在地震波输入下的响应。由于桩的自由度数相对于土体的自由度数可以忽略不计,采用桩-土异步算法时,桩附加的计算量可以忽略,这种高效方法有望用于大型核电结构的桩-土-结构动力相互作用分析中。展开更多
This paper presents in-situ seismic performance tests of a bridge before its demolition due to accumulated scouring problem. The tests were conducted on three single columns and one caisson-type foundation. The three ...This paper presents in-situ seismic performance tests of a bridge before its demolition due to accumulated scouring problem. The tests were conducted on three single columns and one caisson-type foundation. The three single columns were 1.8 m in diameter,reinforced by 30-D32 longitudinal reinforcements and laterally hooped by D16 reinforcements with spacing of 20 cm. The column height is 9.54 m,10.59 m and 10.37 m for Column P2,P3,and P4,respectively. Column P2 had no exposed foundation and was subjected to pseudo-dynamic tests with peak ground acceleration of 0.32 g first,followed by one cyclic loading test. Column P3 was the benchmark specimen with exposed length of 1.2 m on its foundation. The exposed length for Column P4 was excavated to 4 m,approximately 1/3 of the foundation length,to study the effect of the scouring problem to the column performance. Both Column P3 and Column P4 were subjected to cyclic loading tests. Based on the test results,due to the large dimension of the caisson foundation and the well graded gravel soil type that provided large lateral resistance,the seismic performance among the three columns had only minor differences. Lateral push tests were also conducted on the caisson foundation at Column P5. The caisson was 12 m long and had circular cross-sections whose diameters were 5 m in the upper portion and 4 m in the lower portion. An analytical model to simulate the test results was developed in the OpenSees platform. The analytical model comprised nonlinear flexural elements as well as nonlinear soil springs. The analytical results closely followed the experimental test results. A parametric study to predict the behavior of the bridge column with different ground motions and different levels of scouring on the foundation are also discussed.展开更多
In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the st...In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the strong ground motion is considered as three dimensional stationary white noise process and the pile-soil interaction and water-structure interaction are considered. The stochastic response of a typical platform to earthquake load has been computed with this method and the results compared with those obtained with the response spectrum analysis method. The comparison shows that the stochastic analysis method of the response of piled platforms to earthquake load is suitable for this kind of analysis.展开更多
Many bridges located in seismic hazard regions suffer from serious foundation exposure caused by riverbed scour. Loss of surrounding soil significantly reduces the lateral strength of pile foundations. When the scour ...Many bridges located in seismic hazard regions suffer from serious foundation exposure caused by riverbed scour. Loss of surrounding soil significantly reduces the lateral strength of pile foundations. When the scour depth exceeds a critical level, the strength of the foundation is insufficient to withstand the imposed seismic demand, which induces the potential for unacceptable damage to the piles during an earthquake. This paper presents an analytical approach to assess the earthquake damage potential of bridges with foundation exposure and identify the critical scour depth that causes the seismic performance of a bridge to differ from the original design. The approach employs the well-accepted response spectrum analysis method to determine the maximum seismic response of a bridge. The damage potential of a bridge is assessed by comparing the imposed seismic demand with the strengths of the column and the foundation. The versatility of the analytical approach is illustrated with a numerical example and verified by the nonlinear finite element analysis. The analytical approach is also demonstrated to successfully determine the critical scour depth. Results highlight that relatively shallow scour depths can cause foundation damage during an earthquake, even for bridges designed to provide satisfactory seismic performance.展开更多
文摘The seismic behavior of tall buildings can he greatly affected by non-linear soil-pile interaction during strong earthquakes.In this study a 20-storey building is examined as a typical structure supported on a pile foundation for different conditions:(1) rigid base,i.e.no deformation in the foundation:(2) linear soil-pile system;and (3) nonlinear soil-pile system. The effects of pile foundation displacements on the behavior of tall building are investigated,and compared with the behavior of buildings supported on shallow foundation.With a model of non-reflective boundary between the near field and far field, Novak's method of soil-pile interaction is improved.The computation method for vibration of pile foundations and DYNAN computer program are introduced comprehensively.A series of dynamic experiments have been done on full-scale piles, including single pile and group,linear vibration and nonlinear vibration,to verify the validity of boundary zone model.
基金Major Research Plan of National Natural Science Foundation of China Under Grant No.90815009National Natural Science Foundation of China Under Grant No.50378031 and 50178027Western Transport Construction Technology Projects Under Grant No.2009318000100
文摘This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a horizontally saturated sand layer overlaid with a silty clay layer, with the simulated low-cap pile groups embedded. The container was excited in three E1 Centro earthquake events of different levels. Test results indicate that excessive pore pressure (EPP) during slight shaking only slightly accumulated, and the accumulation mainly occurred during strong shaking. The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased. The acceleration response of the sand was remarkably influenced by soil liquefaction. As soil liquefaction occurred, the peak sand displacement gradually lagged behind the input acceleration; meanwhile, the sand displacement exhibited an increasing effect on the bending moment of the pile, and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top. A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events. It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.
基金Thailand Research Fund and Commission on Higher Education,Ministry of Education,Thailand Under Grant No.MRG5180268
文摘This paper describes a quasi-static test program featuring lateral cyclic loading on single piles in sandy soil. The tests were conducted on 18 aluminum model piles with different cross sections and lateral load eccentricity ratios, e/d, (e is the lateral load eccentricity and d is the diameter of pile) of 0, 4 and 8, embedded in sand with a relative density of 30% and 70%. The experimental results include lateral load-displacement hysteresis loops, skeleton curves and energy dissipation curves. Lateral capacity, ductility and energy dissipation capacity of single piles under seismic load were evaluated in detail. The lateral capacities and the energy dissipation capacity of piles in dense sand were much higher than in loose sand. When embedded in loose sand, the maximum lateral load and the maximum lateral displacement of piles increased as e/d increased. On the contrary, when embedded in dense sand, the maximum lateral load of piles decreased as e/d increased. Piles with a higher load eccentricity ratio experienced higher energy dissipation capacity than piles with e/d of 0 in both dense and loose sand. At a given level of displacement, piles with circular cross sections provided the best energy dissipation capacity in both loose and dense sand.
文摘Soil underneath a structure might affect the behavior and the overall response of the structure in seismic events. The role of loose soil conditions and the inclusion of soil-structure interaction (SSI) in the analysis are important issues that need to be addressed. Since steel structures are light, two configurations designed as spatial and perimeter are considered to study the effect of soil on the steel structural frames for the same building. The paper provides a parametric analysis on the influence of SSI on the overall performance of MRFs (Moment Resisting Frames) according to the provisions of Saudi Building Code (SBC) [1]. A case study has been developed in which spatial and perimeter moment resisting frames of 12, 6 and 3 stories residential buildings are designed using Saudi Building Code (SBC) prescriptions. A modal response spectrum analysis has been carried out to see the influence of SSI on the fundamental period of vibration, top story displacement and inter-story drift limitations. Moreover, a static non-linear analysis has been performed to investigate the performance of frames, thus allowing to identify the influence of SSI on the structural design of steel MRFs.
文摘为拓展核电厂的选址范围,有必要对非基岩场地桩基情形的核电结构进行地震安全性评估。在目前的桩-土-结构相互作用分析方法中,Winkler地基梁模型以及p-y法都将桩-土-结构相互作用问题进行了简化,难以反映复杂地基情形。整体有限元法可考虑复杂地基情形,但计算量较大,效率较低。本文基于高效的三维时域土-结构相互作用分区分析(Partitioned Analysis of Soil-Structure Interaction,PASSI)方法,实现桩基与土体分别采用不同时间步距的计算方法,避免土体采用桩基相对较小的时间步距而增加不必要的计算量。本文以AP1000核岛结构作为研究对象,建立了桩-土-核电结构相互作用的三维有限元模型并对其进行分析。通过输入脉冲波验证了该异步算法的有效性,并结合运动相互作用和惯性相互作用,分析了桩身最大剪力和最大弯矩的特点。分析了桩-土-核电结构在地震波输入下的响应。由于桩的自由度数相对于土体的自由度数可以忽略不计,采用桩-土异步算法时,桩附加的计算量可以忽略,这种高效方法有望用于大型核电结构的桩-土-结构动力相互作用分析中。
文摘This paper presents in-situ seismic performance tests of a bridge before its demolition due to accumulated scouring problem. The tests were conducted on three single columns and one caisson-type foundation. The three single columns were 1.8 m in diameter,reinforced by 30-D32 longitudinal reinforcements and laterally hooped by D16 reinforcements with spacing of 20 cm. The column height is 9.54 m,10.59 m and 10.37 m for Column P2,P3,and P4,respectively. Column P2 had no exposed foundation and was subjected to pseudo-dynamic tests with peak ground acceleration of 0.32 g first,followed by one cyclic loading test. Column P3 was the benchmark specimen with exposed length of 1.2 m on its foundation. The exposed length for Column P4 was excavated to 4 m,approximately 1/3 of the foundation length,to study the effect of the scouring problem to the column performance. Both Column P3 and Column P4 were subjected to cyclic loading tests. Based on the test results,due to the large dimension of the caisson foundation and the well graded gravel soil type that provided large lateral resistance,the seismic performance among the three columns had only minor differences. Lateral push tests were also conducted on the caisson foundation at Column P5. The caisson was 12 m long and had circular cross-sections whose diameters were 5 m in the upper portion and 4 m in the lower portion. An analytical model to simulate the test results was developed in the OpenSees platform. The analytical model comprised nonlinear flexural elements as well as nonlinear soil springs. The analytical results closely followed the experimental test results. A parametric study to predict the behavior of the bridge column with different ground motions and different levels of scouring on the foundation are also discussed.
文摘In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the strong ground motion is considered as three dimensional stationary white noise process and the pile-soil interaction and water-structure interaction are considered. The stochastic response of a typical platform to earthquake load has been computed with this method and the results compared with those obtained with the response spectrum analysis method. The comparison shows that the stochastic analysis method of the response of piled platforms to earthquake load is suitable for this kind of analysis.
基金Taiwan Science Council under Grant No.100-2625-M-005-002
文摘Many bridges located in seismic hazard regions suffer from serious foundation exposure caused by riverbed scour. Loss of surrounding soil significantly reduces the lateral strength of pile foundations. When the scour depth exceeds a critical level, the strength of the foundation is insufficient to withstand the imposed seismic demand, which induces the potential for unacceptable damage to the piles during an earthquake. This paper presents an analytical approach to assess the earthquake damage potential of bridges with foundation exposure and identify the critical scour depth that causes the seismic performance of a bridge to differ from the original design. The approach employs the well-accepted response spectrum analysis method to determine the maximum seismic response of a bridge. The damage potential of a bridge is assessed by comparing the imposed seismic demand with the strengths of the column and the foundation. The versatility of the analytical approach is illustrated with a numerical example and verified by the nonlinear finite element analysis. The analytical approach is also demonstrated to successfully determine the critical scour depth. Results highlight that relatively shallow scour depths can cause foundation damage during an earthquake, even for bridges designed to provide satisfactory seismic performance.