期刊文献+
共找到5,406篇文章
< 1 2 250 >
每页显示 20 50 100
Pit Bearing Capacity Effect on Status of Soil Plug During Pile Driving in Ocean Engineering 被引量:4
1
作者 闫澍旺 周群华 +1 位作者 刘润 董伟 《China Ocean Engineering》 SCIE EI 2011年第2期295-304,共10页
Foundation piles of the offshore oil platforms in the Bohai Bay are usually longer than 100 m with a diameter larger than 2 m. Driving such long and large-sized piles into the ground is a difficult task. It needs a co... Foundation piles of the offshore oil platforms in the Bohai Bay are usually longer than 100 m with a diameter larger than 2 m. Driving such long and large-sized piles into the ground is a difficult task. It needs a comprehensive consider ation of the pile dimensions, soil properties and the hammer energy. Thoughtful drivability analysis has to be performed in the design stage. It has been shown that judging whether the soil column inside the pile is fully plugged, which makes the pile behave as close-ended, strongly influences the accuracy of drivability analysis. Engineering practice repeatedly indicates that the current methods widely used for soil plug judgment often give incorrect results, leading the designers to make a wrong decision. It has been found that this problem is caused by the ignorance of the bearing capacity provided by the soil surrounding the pile. Based on the Terzaghi's bearing capacity calculation method for deep foundation, a new approach for judging soil plug status is put forward, in which the surcharge effect has been considered and the dynamic effect coefficient is included. This approach has been applied to some practical engineering projects successfully, which may give more reasonable results than the currently used method does. 展开更多
关键词 ocean platform pile pit bearing capacity plug status static equilibrium driveability
下载PDF
Vertical bearing capacity of pile based on load transfer model 被引量:7
2
作者 赵明华 杨明辉 邹新军 《Journal of Central South University of Technology》 EI 2005年第4期488-493,共6页
The load transfer analytical method is applied to study the bearing mechanism of piles with vertical load in this paper. According to the different hardening rules of soil or rock around the pile shaft, such as work-s... The load transfer analytical method is applied to study the bearing mechanism of piles with vertical load in this paper. According to the different hardening rules of soil or rock around the pile shaft, such as work-softening, ideal elasto-plastic and work-hardening, a universal tri-linear load transfer model is suggested for the development of side and tip resistance by various types of soil (rock) with the consideration of sediment at the bottom of the pile. Based on the model, a formula is derived for the relationship between the settlement and load on the pile top to determine the vertical bearing capacity, taking into account such factors as the characteristics of the stratum, the side resistance along the shaft, and tip resistance under the pile tip. A close agreement of the calculated results with the measured data from a field test pile lends confidence to the future application of the present approach in engineering practice. 展开更多
关键词 pile foundation load transfer model top settlement vertical bearing capacity
下载PDF
Regressive approach for predicting bearing capacity of bored piles from cone penetration test data 被引量:3
3
作者 Iyad S. Alkroosh Mohammad Bahadori +1 位作者 Hamid Nikraz Alireza Bahadori 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第5期584-592,共9页
In this study, th e least sq u are su p p o rt v ecto r m achine (LSSVM) alg o rith m w as applied to predicting th ebearing capacity o f b ored piles e m b ed d ed in sand an d m ixed soils. Pile g eo m etry an d c... In this study, th e least sq u are su p p o rt v ecto r m achine (LSSVM) alg o rith m w as applied to predicting th ebearing capacity o f b ored piles e m b ed d ed in sand an d m ixed soils. Pile g eo m etry an d cone p e n e tra tio nte s t (CPT) resu lts w ere used as in p u t variables for pred ictio n o f pile bearin g capacity. The d ata u se d w erecollected from th e existing litera tu re an d consisted o f 50 case records. The application o f LSSVM w ascarried o u t by dividing th e d ata into th re e se ts: a train in g se t for learning th e pro b lem an d obtain in g arelationship b e tw e e n in p u t variables an d pile bearin g capacity, and testin g an d validation sets forevaluation o f th e predictive an d g en eralization ability o f th e o b tain ed relationship. The predictions o f pilebearing capacity by LSSVM w ere evaluated by com paring w ith ex p erim en tal d ata an d w ith th o se bytrad itio n al CPT-based m eth o d s and th e gene ex pression pro g ram m in g (GEP) m odel. It w as found th a t th eLSSVM perform s w ell w ith coefficient o f d eterm in atio n , m ean, an d sta n d ard dev iatio n equivalent to 0.99,1.03, an d 0.08, respectively, for th e testin g set, an d 1, 1.04, an d 0.11, respectively, for th e v alidation set. Thelow values o f th e calculated m ean squared e rro r an d m ean ab so lu te e rro r indicated th a t th e LSSVM w asaccurate in p redicting th e pile bearing capacity. The results o f com parison also show ed th a t th e p roposedalg o rith m p red icted th e pile bearin g capacity m ore accurately th a n th e trad itio n al m eth o d s including th eGEP m odel. 展开更多
关键词 Bored piles Cone penetration test(CPT) bearing capacity Least square support vector machine(LSSVM) TRAINING VALIDATION
下载PDF
Finite element analysis of effect of soil displacement on bearing capacity of single friction pile 被引量:2
4
作者 王丽 郑刚 欧若楠 《Journal of Central South University》 SCIE EI CAS 2014年第5期2051-2058,共8页
Effect of soil displacement on friction single pile in the cases of tunneling,surcharge load and uniform soil movement was discussed in details with finite element method.Lateral displacement of the pile caused by soi... Effect of soil displacement on friction single pile in the cases of tunneling,surcharge load and uniform soil movement was discussed in details with finite element method.Lateral displacement of the pile caused by soil displacement reached about 90% of the total displacement,which means that P-Δ effect of axial load can be neglected.The maximum moment of pile decreased from 159 kN·m to 133 kN·m in the case of surcharge load when the axial load increased from 0 to the ultimate load.When deformation of pile caused by soil displacement is large,axial load applied on pile-head plays the role of reducing the maximum bending moment in concrete pile to some extent.When pile is on one side of the tunnel,soil displacements around the pile are all alike,which means that the soil pressures around the pile do not decrease during tunneling.Therefore,Q-s curve of the pile affected by tunneling is very close to that of pile in static loading test.Bearing capacities of piles influenced by surcharge load and uniform soil movement are 2480 kN and 2630 kN,respectively,which are a little greater than that of the pile in static loading test(2400 kN).Soil pressures along pile increase due to surcharge load and uniform soil movement,and so do the shaft resistances along pile,as a result,when rebars in concrete piles are enough,bearing capacity of pile affected by soil displacement increases compared with that of pile in static loading test. 展开更多
关键词 TUNNELING surcharge load uniform soil movement friction pile bearing capacity
下载PDF
Study of the Bearing Capacity at the Variable Cross-Section of A Riser- Surface Casing Composite Pile 被引量:2
5
作者 LIU Run LIANG Chao 《China Ocean Engineering》 SCIE EI CSCD 2021年第2期262-271,共10页
Reducing the cost of offshore platform construction is an urgent issue for marginal oilfield development.The offshore oil well structure includes a riser and a surface casing.The riser,surface casing and oil well ceme... Reducing the cost of offshore platform construction is an urgent issue for marginal oilfield development.The offshore oil well structure includes a riser and a surface casing.The riser,surface casing and oil well cement can be considered special variable cross-section piles.Replacing or partially replacing the steel pipe pile foundation with a variable cross-section pile to provide the required bearing capacity for an offshore oil platform can reduce the cost of foundation construction and improve the economic efficiency of production.In this paper,the finite element analysis method is used to investigate the variable cross-section bearing mode of composite piles composed of a riser and a surface casing in saturated clay under a vertical load.The calculation formula of the bearing capacity at the variable section is derived based on the theory of spherical cavity expansion,the influencing factors of the bearing capacity coefficient N_(c) are revealed,and the calculation method of N_(c) is proposed.By comparing the calculation results with the results of the centrifuge test,the accuracy and applicability of the calculation method are verified.The results show that the riser composite pile has a rigid core in the soil under the variable cross-section,which increases the bearing capacity at the variable cross-section. 展开更多
关键词 riser-surface casing composite pile variable cross-section bearing capacity coefficient pile end resistance soil rigid core
下载PDF
Estimation of Axial Pile Bearing Capacity According to Shear Strength Parameters of Soil 被引量:1
6
作者 Yu, XD Yan, SW Sun, WH 《China Ocean Engineering》 SCIE EI 1997年第2期235-242,共8页
At pesent, it is very popular to estimate pile bearing capacity by use of empirical formula and physical indexes of soil provided in the design codes for civil construction in China. This paper attempts to apply mecha... At pesent, it is very popular to estimate pile bearing capacity by use of empirical formula and physical indexes of soil provided in the design codes for civil construction in China. This paper attempts to apply mechanical indexes of soil and semi-empirical formulas, which are based on soil mechanical theories and were summarized and presented by Meyerhof in 1976, to calculate the axial pile bearing capacity. Loading test results of 24 single piles in Tianjin area have been collected and compared with the proposed calulation approach. 展开更多
关键词 axial pile bearing capacity consolidated-undrained shear strength index test pile skin resistance tip resistance
下载PDF
Uplift Pile Test in Rocks and Its Bearing Capacity 被引量:2
7
作者 吴兴序 于志强 袁文忠 《Journal of Southwest Jiaotong University(English Edition)》 2002年第1期84-89,共6页
This paper reports in situ tension test and laboratory model test for large diameter, manually digging anchorage piles in the 2nd Luzhou Changjiang Bridge. Tension behavior, uplift bearing capacity and influenc... This paper reports in situ tension test and laboratory model test for large diameter, manually digging anchorage piles in the 2nd Luzhou Changjiang Bridge. Tension behavior, uplift bearing capacity and influence of rock characteristics on bearing capacity are discussed. Proposes are presented with respect to issues related to the construction and design of uplift piles. 展开更多
关键词 uplift pile ROCK bearing capacity TEST
下载PDF
3D FE Analysis of Effect of Ground Subsidence and Piled Spacing on Ultimate Bearing Capacity of Piled Raft and Axial Force of Piles in Piled Raft 被引量:2
8
作者 Tuan Van Tran Makoto Kimura Tirawat Boonyatee 《Open Journal of Civil Engineering》 2012年第4期206-213,共8页
The effects of ground subsidence and piled spacing on axial force of piles in squared piled rafts were investigated using numerical analysis. Two cases of piled rafts in soft clay including case 1 (s = 2d) and case 2 ... The effects of ground subsidence and piled spacing on axial force of piles in squared piled rafts were investigated using numerical analysis. Two cases of piled rafts in soft clay including case 1 (s = 2d) and case 2 (s = 4d) with s and d were piled spacing and piled diameter respectively were considered in this study. Undrained (without ground water pumping) and drained (with ground water pumping) conditions were applied in each case in order to evaluate variations of ultimate bearing capacity of piled raft and axial force of the piles in piled raft. The results showed that ultimate bearing capacity increased about 25% for undrained condition and about 32% for drained condition when piled spacing increased from 2d to 4d. In the same piled spacing, axial force of the piles increased about 9% for piled spacing of 2d and 7% for piled spacing of 4d when drained condition was applied. When piled spacing increased 2 times (2d to 4d), the axial force of piles increased about 7% for undrained condition and about 5% for drained condition. 展开更多
关键词 Ground SUBSIDENCE piled RAFT piled SPACING bearing capacity AXIAL FORCE 3D FE Simulation
下载PDF
Evaluation of ultimate bearing capacity of Y-shaped vibro-pile
9
作者 王新泉 陈永辉 +2 位作者 林飞 卢孝益 张霆 《Journal of Central South University》 SCIE EI CAS 2008年第S2期186-194,共9页
Based on Mindlin stress solution, a numerical computational method was proposed to calculate the stresses in the ground induced by side friction and the resistance of Y-shaped vibro-pile. The improved Terzaghi's a... Based on Mindlin stress solution, a numerical computational method was proposed to calculate the stresses in the ground induced by side friction and the resistance of Y-shaped vibro-pile. The improved Terzaghi's and ЪерезанцевВГ's methods for ultimate bearing capacity evaluation were proposed by considering the stress strength induced by friction resistance at pile head level of Y-pile. A new method to calculate the ultimate bearing capacity of Y-pile was also proposed based on the assumptions of soil failure mode at the tip of Y-pile and the use of Mohr-Coulomb soil yield criterion and Vesic compressive correction coefficient with the induced stresses in the ground. Based on the comparisons with the field static load test results, it is found that the improved Terzaghi's method gives higher ultimate capacity, while the other two methods shows good agreement with the field results. 展开更多
关键词 Y-shaped vibro-pile circular pile MINDLIN stress solution ULTIMATE bearing capacity of pile TIP static loading test
下载PDF
Bearing capacity and mechanical behavior of CFG pile composite foundation
10
作者 陈秋南 赵明华 +1 位作者 周国华 张主华 《Journal of Central South University》 SCIE EI CAS 2008年第S2期45-49,共5页
CFG pile (i.e., pile constructed by granular materials of cement, fly-ash and gravel) composite foundation is applied in subsoil treatment widely and successfully. In order to have a further study of this kind of subs... CFG pile (i.e., pile constructed by granular materials of cement, fly-ash and gravel) composite foundation is applied in subsoil treatment widely and successfully. In order to have a further study of this kind of subsoil treatment technology, the influencing factors and calculation methods of the vertical bearing capacity of single CFG pile and the CFG pile composite foundation were discussed respectively. And based on the obtained solutions, effects by the cushion and measurements to reduce negative friction area were analyzed. Moreover, the developing law of settlement and bearing capacity eigenvalue controlled by the material strength with the increase of load were given for the CFG composite foundation. The in-situ static load test was tested for CFG pile. The results of test show that the maximum test load or half of the ultimate load is used from all the points of test, the average bearing capacity eigenvalue of single pile is 390 kN, and slightly greater than the design value of bearing capacity. The bearing capacity eigenvalues of composite foundation for 3 piles are greater than 300 kPa, and the mechanical properties of CFG pile composite foundation are almost identical in the case of the same load and cushion thickness. The pile-soil stress ratio and the load-sharing ratio can be adjusted through setting up cushion thickness. 展开更多
关键词 CFG pile composite FOUNDATION properties of bearing capacity in-situ static load pile-SOIL stress ratio
下载PDF
Analysis of bearing capacity of pile foundation in discontinued permafrost regions
11
作者 JiLiang Wang ChenXi Zhang XinLei Na 《Research in Cold and Arid Regions》 CSCD 2017年第4期420-424,共5页
Piles are the main building foundation in permafrost regions. Thawing the permafrost foundation would have a negative effect on a pile, and may cause damage to the building. This paper focuses on the effects of negati... Piles are the main building foundation in permafrost regions. Thawing the permafrost foundation would have a negative effect on a pile, and may cause damage to the building. This paper focuses on the effects of negative friction force due to the melt of permafrost, and presents four calculated methods for bearing capacity of a pile. An engineering station was taken as an example, where the lengths of a pile were compared based on four methods. Finally, quick field load tests were carried out, and some meaningful conclusions are presented. Thus, these analytical results can be used to design a pile for permafrost regions. 展开更多
关键词 discontinued PERMAFROST pile bearing capacity NEGATIVE FRICTION FORCE
下载PDF
Grouted Pile and Its Bearing Capacity
12
作者 于志强 王旭 吴兴序 《Journal of Modern Transportation》 2000年第1期25-32,共8页
The grouting method applied in bored pile is an improvement to the conventional bored pile. Load tests have proved that grouting under the bored pile tip is an effective method to enhance the bearing capacity of the p... The grouting method applied in bored pile is an improvement to the conventional bored pile. Load tests have proved that grouting under the bored pile tip is an effective method to enhance the bearing capacity of the pile and to reduce the pile settlement. In this paper, the grouting technology is described and pile load test results are discussed. In order to put the grouting method into design practice, the authors analyze the working mechanism of soil compaction. And, based on the theory of cavities expansion in soil mass, approximate formulae are proposed for estimating the bearing capacity of the grouted pile. The theoretical prediction agrees well with the load test results. 展开更多
关键词 grouting method bored pile grouted pile bearing capacity cavities expansion
下载PDF
Research on Vertical Bearing Capacity of Pile Foundation under Wave Scouring
13
作者 Xinyue Wang 《Open Journal of Modelling and Simulation》 2021年第2期124-134,共11页
In order to analyze the influence of wave scouring on the vertical bearing behavior of the pile foundation, the finite element software ABAQUS was used to simulate the force of the pile foundation under the action of ... In order to analyze the influence of wave scouring on the vertical bearing behavior of the pile foundation, the finite element software ABAQUS was used to simulate the force of the pile foundation under the action of wave scouring. A three-dimensional finite element calculation model of the pile foundation was established according to the actual working conditions, and the calculation results were compared with the field test results to verify the correctness of the built model. Then, the influence of wave scouring depth and pile embedding depth on the vertical bearing behavior of pile foundation was analyzed through calculation examples. The analysis results showed that the greater the depth of wave erosion, the greater the impact on the vertical bearing behavior of the pile foundation. Meanwhile, the smaller the buried depth of the pile body, the greater the impact on the vertical bearing capacity of the pile. Thus, the reduction rate of the vertical bearing capacity under different scouring depths was obtained. 展开更多
关键词 Vertical bearing capacity Partially Embedded piles Wave Erosion Erosion Depth ABAQUS
下载PDF
Prediction of bearing capacity of pile foundation using deep learning approaches
14
作者 Manish KUMAR Divesh Ranjan KUMAR +2 位作者 Jitendra KHATTI Pijush SAMUI Kamaldeep Singh GROVER 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第6期870-886,共17页
The accurate prediction of bearing capacity is crucial in ensuring the structural integrity and safety of pile foundations.This research compares the Deep Neural Networks(DNN),Convolutional Neural Networks(CNN),Recurr... The accurate prediction of bearing capacity is crucial in ensuring the structural integrity and safety of pile foundations.This research compares the Deep Neural Networks(DNN),Convolutional Neural Networks(CNN),Recurrent Neural Networks(RNN),Long Short-Term Memory(LSTM),and Bidirectional LSTM(BiLSTM)algorithms utilizing a data set of 257 dynamic pile load tests for the first time.Also,this research illustrates the multicollinearity effect on DNN,CNN,RNN,LSTM,and BiLSTM models’performance and accuracy for the first time.A comprehensive comparative analysis is conducted,employing various statistical performance parameters,rank analysis,and error matrix to evaluate the performance of these models.The performance is further validated using external validation,and visual interpretation is provided using the regression error characteristics(REC)curve and Taylor diagram.Results from the comparative analysis reveal that the DNN(Coefficient of determination(R^(2))_(training(TR))=0.97,root mean squared error(RMSE)_(TR)=0.0413;R^(2)_(testing(TS))=0.9,RMSE_(TS)=0.08)followed by BiLSTM(R^(2)_(TR)=0.91,RMSE_(TR)=0.782;R^(2)_(TS)=0.89,RMSE_(TS)=0.0862)model demonstrates the highest performance accuracy.It is noted that the BiLSTM model is better than LSTM because the BiLSTM model,which increases the amount of information for the network,is a sequence processing model made up of two LSTMs,one of which takes the input in a forward manner,and the other in a backward direction.The prediction of pile-bearing capacity is strongly influenced by ram weight(having a considerable multicollinearity level),and the effect of the considerable multicollinearity level has been determined for the model based on the recurrent neural network approach.In this study,the recurrent neural network model has the least performance and accuracy in predicting the pile-bearing capacity. 展开更多
关键词 deep learning algorithms high-strain dynamic pile test bearing capacity of the pile
原文传递
Improving Bearing Capacity of Weak Soils:A Review
15
作者 Samaila Saleh 《Journal of Construction Research》 2021年第1期29-34,共6页
Weak soils,such as soft clay and loose sand,have a poor bearing capaci­ty,making them incapable of bearing the load of superstructures that will be imposed on them.As a result,engineers must have a solution to th... Weak soils,such as soft clay and loose sand,have a poor bearing capaci­ty,making them incapable of bearing the load of superstructures that will be imposed on them.As a result,engineers must have a solution to the is­sue of poor bearing capacity in weak soils before embanking into building on them.This paper reviewed the use of stone columns,piled rafts,and geogrids for improving the bearing capability of weak soils.Important findings from recent research are also discussed.From the review of the previous researcher’s findings,it was found that modelling approaches such as physical modelling(full scale,centrifuge,laboratory scale)and numerical modelling are used to study bearing capacity improvement. 展开更多
关键词 bearing capacity Stone column piled raft Geogrids physical modelling Numerical simulation
下载PDF
Bearing Behaviors of Stiffened Deep Cement Mixed Pile 被引量:1
16
作者 吴迈 赵欣 《Transactions of Tianjin University》 EI CAS 2006年第3期209-214,共6页
A series of investigations were conducted to study the bearing capacity and load transfer mechanism of stiffened deep cement mixed (SDCM) pile. Laboratory tests including six specimens were conducted to investigate ... A series of investigations were conducted to study the bearing capacity and load transfer mechanism of stiffened deep cement mixed (SDCM) pile. Laboratory tests including six specimens were conducted to investigate the frictional resistance between the concrete core and the cementsoil. Two model piles and twenty-four full-scale piles were tested to examine the bearing behavior of single pile. Laboratory and model tests results indicate that the cohesive strength is large enough to ensure the interaction between core pile and the outer cement-soil. The full-scale test results show that the SDCM piles exhibit similar bearing behavior to bored and cast-in-place concrete piles. In general, with the rational composite structure the SDCM piles can transmit the applied load effectively, and due to the addition of the stiffer core, the SDCM piles possess high bearing capacity. Based on the findings of these experimental investigations and theoretical analysi , a practical design method is developed to predict the vertical bearing capacity of SDCM pile. 展开更多
关键词 stiffened deep cement mixed pile bearing capacity load transfer mechanism design method
下载PDF
Model tests on uplift capacity of double-belled pile influenced by distance between bells
17
作者 SUN Tao CUI Xin-zhuang +5 位作者 SUN Yan-feng HAN Ruo-nan MA Rui-jin YANG Jun-jie WANG Yi-lin CHANG Yu-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第5期1630-1640,共11页
To optimize the distance between the bells in pile design,this paper reports a series of small scale tests on the uplift capacity of double belled piles embedded in dry dense sand considering different bell space rati... To optimize the distance between the bells in pile design,this paper reports a series of small scale tests on the uplift capacity of double belled piles embedded in dry dense sand considering different bell space ratios.Finite element modelling is also performed to evaluate the range of soil failure around the piles during pile uplift displacement.Test results show that when bell space ratio is 6 or 8,the uplift capacity reaches the peak value.The upper bell bears more load than the lower one for the piles with bell space ratio less than 6,while the lower bell bears more load than the upper one for the piles with bell space ratio larger than 8. 展开更多
关键词 doubled-belled pile optimized distance uplift bearing capacity model test sand foundation
下载PDF
Infuencing Factors of Load Carrying Capacity and Cooperative Work Laws of Metro Uplift Piles
18
作者 Bo Liu Haoran Li Shuya Liu 《Structural Durability & Health Monitoring》 EI 2020年第3期249-264,共16页
The buoyancy of groundwater can reduce the foundation bearing capa-city and cause the metro tunnels to float as a whole,which threatens the safety of structures seriously.Therefore,uplift piles are set up to improve t... The buoyancy of groundwater can reduce the foundation bearing capa-city and cause the metro tunnels to float as a whole,which threatens the safety of structures seriously.Therefore,uplift piles are set up to improve the structural sta-bility.In this paper,FLAC3D software is used to establish the calculation models of pile foundation.The bearing failure process of uplift piles was simulated to study the influencing factors on single pile load bearing capacity as well as the cooperative work laws of pile groups.The load-displacement curves of pile top under different length-diameter ratios,pile soil interface characteristics and pile types are obtained,respectively.The results showed that,increasing the length-diameter ratio and the pile-soil interface roughness properdly can improve the bear-ing capacity of uplift piles.Besides,changing the shapes of constant pile section can also improve it,which has the most significant effect concerning of saving material cost.In the loading process of pile groups,the ultimate bearing capacity of corner pile is the biggest,the side pile is the next,and the center pile is the smallest.The de formation characteristics of pile top are as follows:the center pile is the biggest,the side pile is the next,and comer pile is the smallest.Combined with the results,the uplift resistance of group piles can be enhanced pertinently,and the conclusions provide guidance for the design and construction of up lift piles in the actual engineer. 展开更多
关键词 Uplift pile length-diameter ratio utimate bearing capacity cooperative work
下载PDF
New Method for Prediction Pile Capacity Executed by Continuous Flight Auger (CFA)
19
作者 Wael N. Abd Elsamee 《Engineering(科研)》 2013年第4期344-354,共11页
A study of piles is quit complex and the estimation of carrying capacity is calculated from theoretical formula and load test results. The design resistance may be calculated using conventional static pile design theo... A study of piles is quit complex and the estimation of carrying capacity is calculated from theoretical formula and load test results. The design resistance may be calculated using conventional static pile design theory. The pile founding depths should be predetermined before installation from a site geotechnical investigation. To ascertain the field performance and estimate load carrying capacities of piles, in-situ pile load tests should be conducted. In this study, field pile load test data is analyzed to estimate the ultimate load for end bearing piles. The investigated site is about 100 × 110 m located in Alexandria, Egypt. Geotechnical investigations at the site are carried out to a maximum depth of 45 m. Four borings have been done in field. The tests are conducted at the site for two skelton structure buildings to be constructed on raft foundation rested on piles executed by continuous flight auger. Four pile load tests are performed on 600 mmdiameters and 27 mlengths. Ultimate capacities of piles are determined according to different methods. It is concluded that the percentage of friction load carried by the shaft along the pile length is about 46% of total load while the percentage of load carried by the end bearing is 54% of total load. A new proposed method by the author is presented to calculate the ultimate capacity of pile from pile load test. The proposed method depends on the settlement of pile without taken into consideration the elastic deformation. An empirical formula is presented from the relationship between stress and settlement of pile due to friction and end bearing only after deducting the elastic deformation. However, the obtained results for the ultimate capacity of end bearing piles are considered to be more accurate than other methods. The proposed method appears to give bitter results that agrees well with the theoretical predictions. The proposed method is easier, quicker and more reliable. 展开更多
关键词 Soil pile capacity FLIGHT AUGER (CFA) END bearing pile pile Load
下载PDF
ON THE DRIVING BEHAVIOR,VARIABLE-DIAMETEREFFECT AND BEAKING CAPACITY OF DRIVENCAST-IN-SITU PILE WITHFLAT
20
作者 Shi Peidong , Fu Zhenqiu , Zhan Xiaoying Zhejing Academy of Building Research, Hangzhou 3100l2, China Zia Jinzhang Tongji University, Shanghai 200092 , China 《西部探矿工程》 CAS 1995年第5期66-71,共6页
ONTHEDRIVINGBEHAVIOR,VARIABLE-DIAMETEREFFECTANDBEAKINGCAPACITYOFDKIVENCAST-IN-SITUPILEWITHFLATOVERSIZETIPShi... ONTHEDRIVINGBEHAVIOR,VARIABLE-DIAMETEREFFECTANDBEAKINGCAPACITYOFDKIVENCAST-IN-SITUPILEWITHFLATOVERSIZETIPShiPeidong,FuZhenqiu... 展开更多
关键词 pile TIP flat oversize TIP DRIVEN CAST-IN-SITU pile driving behavior variable-diameter effect bear-ing capacity settlensent
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部