期刊文献+
共找到860篇文章
< 1 2 43 >
每页显示 20 50 100
High-frequency interference waves in low strain dynamic testing of X-section concrete piles 被引量:1
1
作者 Qu Liming Fan Yuming +2 位作者 Ding Xuanming Yang Changwei Zhang Yanling 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第4期877-885,共9页
Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed ... Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed with undesired interference components,often featuring as high-frequency fluctuations.Previous studies have revealed that sectional geometry(shape and size)greatly affects the high-frequency interference.In this study,low strain dynamic testing on full-scale X-section concrete is conducted in order to investigate the influences of high-frequency interference on velocity responses at the pile head.Emphasis is placed on the frequency and peak value of interference waves at various receiving points.Additionally,the effects of the geometrical,and mechanical properties of the pile shaft on high-frequency interference are elaborated on through the three-dimensional finite element method.The results show that the measured wave is obscured by interference waves superposed by two types of high-frequency components.The modulus and cross-sectional area are contributing factors to the frequency and peak value of the interference waves.On the other hand,the position with the least interference is determined,to some extent,by the accurate shape of the X-section. 展开更多
关键词 low strain dynamic testing X-section concrete pile high-frequency interference full-scale model test finite element method
下载PDF
Model tests on XCC-piled embankment under dynamic train load of high-speed railways 被引量:7
2
作者 Niu Tingting Liu Hanlong +1 位作者 Ding Xuanming Zheng Changjie 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第3期581-594,共14页
Piled embankments,which offer many advantages,are increasingly popular in construction of high-speed railways in China.Although the performance of piled embankment under static loading is well-known,the behavior under... Piled embankments,which offer many advantages,are increasingly popular in construction of high-speed railways in China.Although the performance of piled embankment under static loading is well-known,the behavior under the dynamic train load of a high-speed railway is not yet understood.In light of this,a heavily instrumented piled embankment model was set up,and a model test was carried out,in which a servo-hydraulic actuator outputting M-shaped waves was adopted to simulate the process of a running train.Earth pressure,settlement,strain in the geogrid and pile and excess pore water pressure were measured.The results show that the soil arching height under the dynamic train load of a high-speed railway is shorter than under static loading.The growth trend for accumulated settlement slowed down after long-term vibration although there was still a tendency for it to increase.Accumulated geogrid strain has an increasing tendency after long-term vibration.The closer the embankment edge,the greater the geogrid strain over the subsoil.Strains in the pile were smaller under dynamic train loads,and their distribution was different from that under static loading.At the same elevation,excess pore water pressure under the track slab was greater than that under the embankment shoulder. 展开更多
关键词 piled embankment model test dynamic train load of high-speed railways XCC-pile M-shaped wave
下载PDF
Effects of topography on dynamic responses of single piles under vertical cyclic loading 被引量:8
3
作者 QU Li-ming DING Xuan-ming +2 位作者 WU Chong-rong LONG Yong-hong YANG Jin-chuan 《Journal of Mountain Science》 SCIE CSCD 2020年第1期230-243,共14页
This paper describes model tests of single piles subjected to vertical cyclic compressive loading for three kinds of topography: sloping ground, level ground, and inclined bedrock. Comprehensive dynamic responses invo... This paper describes model tests of single piles subjected to vertical cyclic compressive loading for three kinds of topography: sloping ground, level ground, and inclined bedrock. Comprehensive dynamic responses involving cyclic effects and vibration behaviours are studied under various load combinations of dynamic amplitude, mean load,frequency and number of cycles. Test results show that permanent settlement can generally be predicted with a quadratic function or power function of cycles.Sloping ground topography produces more pronounced settlement than level ground under the same load condition. For vibration behaviour,displacement amplitude is weakly affected by the number of cycles, while load amplitude significantly influences dynamic responses. Test results also reveal that increasing load amplitude intensifies nonlinearity and topography effects. The strain distribution in a pile and soil stress at the pile tip are displayed to investigate the vibration mechanism accounting for sloping ground effects. Furthermore, the dynamic characteristics among three kinds of topography in the elastic stage are studied using a three-dimensional finite method. Numerical results are validated by comparing with experimental results for base inclination topography. An inclined soil profile boundary causes non-axisymmetric resultant deformation, though a small difference in vertical displacement is observed. 展开更多
关键词 pile Model test dynamic response Permanent settlement Vibration displacement Topography effects
下载PDF
Shaking table test for reinforcement of soil slope with multiple sliding surfaces by reinforced double-row anti-slide piles 被引量:6
4
作者 WU Hong-gang PAI Li-fang 《Journal of Mountain Science》 SCIE CSCD 2022年第5期1419-1436,共18页
Despite the continuous advancements of engineering construction in high-intensity areas,many engineering landslides are still manufactured with huge thrust force,and double-row piles are effective to control such larg... Despite the continuous advancements of engineering construction in high-intensity areas,many engineering landslides are still manufactured with huge thrust force,and double-row piles are effective to control such large landslides.In this study,large shaking table test were performed to test and obtain multi-attribute seismic data such as feature image,acceleration,and dynamic soil pressure.Through the feature image processing analysis,the deformation characteristics for the slope reinforced by double-row piles were revealed.By analyzing the acceleration and the dynamic soil pressure time domain,the spatial dynamic response characteristics were revealed.Using Fast Fourier Transform and half-power bandwidth,the damping ratio of acceleration and dynamic soil pressure was obtained.Following that,the Seism Signal was used to calculate the spectral displacement of the accelerations to obtain the regional differences of spectral displacement.The results showed that the overall deformation mechanism of the slope originates from tension failure in the soil mass.The platform at the back of the slope was caused by seismic subsidence,and the peak acceleration ratio was positively correlated with the relative pile heights.The dynamic soil pressure of the front row piles showed an inverted"K"-shaped distribution,but that of the back row piles showed an"S"-shaped distribution.The predominant frequency of acceleration was 2.16 Hz,and the main frequency band was 0.7-6.87 Hz;for dynamic soil pressure,the two parameters became 1.15 Hz and 0.5-6.59 Hz,respectively.In conclusion,dynamic soil pressure was more sensitive to dampening effects than acceleration.Besides,compared to acceleration,dynamic soil pressure exhibited larger loss factors and lower resonance peaks.Finally,back row pile heads were highly sensitive to spectral displacement compared to front row pile heads.These findings may be of reference value for future seismic designs of double-row piles. 展开更多
关键词 Double row anti-slide piles multislide surface landslide Shaking table test ACCELERATION dynamic soil pressure dynamic response characteristic
下载PDF
Shaking Table Tests on Bridge Foundation Reinforced by Antislide Piles on Slope 被引量:1
5
作者 ZHOU Heng SU Qian +1 位作者 LIU Jie YUE Fei 《Earthquake Research in China》 CSCD 2019年第3期514-524,共11页
Based on the requirement of seismic reinforcement of bridge foundation on slope in the Chengdu-Lanzhou railway project,a shaking table model test of anti-slide pile protecting bridge foundation in landslide section is... Based on the requirement of seismic reinforcement of bridge foundation on slope in the Chengdu-Lanzhou railway project,a shaking table model test of anti-slide pile protecting bridge foundation in landslide section is designed and completed. By applying Wenchuan seismic waves with different acceleration peaks,the stress and deformation characteristics of bridge pile foundation and anti-slide pile are analyzed,and the failure mode is discussed. Results show that the dynamic response of bridge pile and anti-slide pile are affected by the peak value of seismic acceleration of earthquake,with which the stress and deformation of the structure increase. The maximum dynamic earth pressure and the moment of anti-slide piles are located near the sliding surface,while that of bridge piles are located at the top of the pile. Based on the dynamic response of structure,local reinforcement needs to be carried out to meet the requirement of the seismic design. The PGA amplification factor of the surface is greater than the inside,and it decreases with the increase of the input seismic acceleration peak. When the slope failure occurs,the tension cracks are mainly produced in the shallow sliding zone and the coarse particles at the foot of the slope are accumulated. 展开更多
关键词 SHAKING TABLE test Anti-slide pile Bridge pile FOUNDATION dynamic response Damage mode
下载PDF
The Dynamic Characteristic Experimental Method on the Composite Foundation with Rigid-Flexible Compound Piles 被引量:2
6
作者 Jihui Ding Weiyu Wang +2 位作者 Tuo Zhao Junhui Feng Panxing Zhang 《Open Journal of Civil Engineering》 2013年第2期94-98,共5页
Based on the idea of optimization design of pile type, the composite foundations, which include cememt-flyash-gaavel (for short CFG) long piles and cement-soil (for short CS) short piles, and CS piles with CFG core as... Based on the idea of optimization design of pile type, the composite foundations, which include cememt-flyash-gaavel (for short CFG) long piles and cement-soil (for short CS) short piles, and CS piles with CFG core as well, are formed. The method of the site dynamic characteristic tests of the composite foundations is discussed. The test results show that fireworks bomb may replace demolitions as the vibration resource. Vibration time is about 0.1 sec. Horizontal vibration major frequency is at 22.476 - 56.436 Hz, and vertical vibration major frequency is at 15.538 - 55.884 Hz. The pile arrangements of the composite foundation in the same site have more effect on the acceleration peak value. From the point of vibration, the anti-seismic effect of the CS piles with CFG core is better than others. 展开更多
关键词 Cement-Soil pileS Cememt-Flyash-Gaavel pileS Composite FOUNDATION dynamic Characteristic In-Site test
下载PDF
Dynamic soil arching in piled embankment under train load of high-speed railways
7
作者 Niu Tingting Yang Yule +2 位作者 Ma Qianli Zou Jiuqun Lin Bin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期719-730,共12页
Piled embankments have many advantages that have been applied in high-speed railway construction engineering.However,the load transfer mechanism of piled embankments,such as soil arching and tension membranes,is still... Piled embankments have many advantages that have been applied in high-speed railway construction engineering.However,the load transfer mechanism of piled embankments,such as soil arching and tension membranes,is still unclear,especially under dynamic loads.To investigate the soil arching and tension membrane under dynamic train loads on high-speed railways,a large-scale piled embankment model test with X-shaped piles as vertical reinforcement was performed,in which twenty-eight earth pressure cells were installed in the piled embankment and an M-shaped wave was adopted to simulate the high-speed railway train load.The results show that dynamic soil arching only occurs when two bogies of a carriage pass by and disappears at other times.The dynamic soil arching and membrane effect are the most significant under the concrete base.The arching height,stress concentration ratio and pile-soil load sharing ratio have a minimal value at 25 Hz.The dynamic soil arching degrades severely at 25 Hz,whose height at 25 Hz is only 0.35 times that at 5 Hz.The arching height fluctuates over a narrow range with increasing loading amplitude.The stress concentration ratio and the pile-soil load sharing ratio increase monotonically as the loading amplitude increases. 展开更多
关键词 dynamic soil arching membrane effect piled embankment train load model test
下载PDF
Influence of pile spacing on seismic response of piled raft in soft clay: centrifuge modeling 被引量:1
8
作者 Yang Jun Yang Min Chen Haibing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第4期719-733,共15页
In order to study the infl uence of pile spacing on the seismic response of piled raft in soft clay, a series of shaking table tests were conducted by using a geotechnical centrifuge. The dynamic behavior of accelerat... In order to study the infl uence of pile spacing on the seismic response of piled raft in soft clay, a series of shaking table tests were conducted by using a geotechnical centrifuge. The dynamic behavior of acceleration, displacement and internal forces was examined. The test results indicate that the seismic acceleration responses of models are generally greater than the surrounding soil surface in the period ranges of 2–10 seconds. Foundation instant settlements for 4×4 and 3×3 piled raft (with pile spacing equal to 4 and 6 times pile diameter) are somewhat close to each other at the end of the earthquake, but reconsolidation settlements are greater for 3×3 piled raft. The seismic acceleration of superstructure, the uneven settlement of the foundation and the maximum bending moment of pile are relatively lower for 3×3 piled raft. Successive earthquakes lead to the softening behavior of soft clay, which causes a reduction of the pile bearing capacity and thus loads are transferred from the pile group to the raft. For the case of a 3×3 piled raft, there is relatively smaller change of the load sharing ratio of the pile group and raft after the earthquake and the distribution of maximum bending moments at the pile head is more uniform. 展开更多
关键词 piled RAFT pile SPACING soft clay dynamic CENTRIFUGE model test seismic response SUBSIDENCE load sharing bending moment
下载PDF
Reliability of design approaches for axially loaded offshore piles and its consequences with respect to the North Sea
9
作者 Kirill A.Schmoor Martin Achmus +1 位作者 Aligi Foglia Maik Wefer 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第6期1112-1121,共10页
In the near future, several offshore wind farms are planned to be built in the North Sea. Therefore, jacket and tripod constructions with mainly axially loaded piles are suitable as support structures. The current des... In the near future, several offshore wind farms are planned to be built in the North Sea. Therefore, jacket and tripod constructions with mainly axially loaded piles are suitable as support structures. The current design of axial bearing resistance of these piles leads to deviant results regarding the pile resistance when different design methods are adopted. Hence, a strong deviation regarding the required pile length must be addressed. The reliability of a design method can be evaluated based on a model error which describes the quality of the considered design method by comparing measured and predicted pile bearing resistances. However, only few pile load tests are reported with regard to the boundary conditions in the North Sea. This paper presents 6 large-scale axial pile load tests which were incorporated within a new model error approach for the current design methods used for the axial bearing resistance,namely API Main Text method and cone penetration test(CPT)-based design methods, such as simplified ICP-05, offshore UWA-05, Fugro-05 and NGI-05 methods. Based on these new model errors, a reliabilitybased study towards the safety was conducted by performing a Monte-Carlo simulation. In addition,consequences regarding the deterministic pile design in terms of quality factors were evaluated. It is shown that the current global safety factor(GSF) prescribed and the partial safety factors are only valid for the API Main Text and the offshore UWA-05 design methods; whereas for the simplified ICP-05,Fugro-05 and NGI-05 design methods, an increase in the required embedded pile length and thus in the GSF up to 2.69, 2.95 and 3.27, respectively, should be considered to satisfy the desired safety level according to DIN EN 1990 of b ? 3.8. Further, quality factors for each design method on the basis of all reliability-based design results were derived. Hence, evaluation of each design method regarding the reliability of the pile capacity prediction is possible. 展开更多
关键词 pile load test Model error System reliability Global safety factors(GSFs) quality factors
下载PDF
Experimental study on DX pile performance in frozen soils under lateral loading
10
作者 XiaoBing Liu LiHong Chen +2 位作者 ZhongYang Yu JianXiao Hu Wen Peng 《Research in Cold and Arid Regions》 CSCD 2013年第5期608-613,共6页
Experiments about working mechanism and mechanical characteristics of the DX model pile foundation under lateral dynamic and static loading were conducted by using a model system of the dynamic frozen soil-pile intera... Experiments about working mechanism and mechanical characteristics of the DX model pile foundation under lateral dynamic and static loading were conducted by using a model system of the dynamic frozen soil-pile interaction. The horizontal displacement-force relationship of the pile head and bending moment distribution along the body in frozen soils of different temperatures were discussed. According to test results, both the horizontal disp!acement-force relationship of the DX pile head and bending moment distribution of the DX pile body are smaller than that of equal-diameter piles under same lateral loads. The piles with different plate positions show different displacements and bending moments. This phenomenon is mainly related to the soil temperature and bearing plates locations. Thus, dynamic response analysis of the pile foundation should be taken into account. 展开更多
关键词 DX pile frozen soils lateral static load lateral dynamic load model test
下载PDF
Verification of Seismic Performance of Pile Foundation in Composite Ground through Experimental and Numerical Methods
11
作者 Tomisawa Koichi Miura Seiichi 《Journal of Civil Engineering and Architecture》 2013年第6期656-669,共14页
A new construction method of pile foundation in composite ground, in which, prior to installing piles, the ground is improved around the heads of the piles in soft ground or ground subject to liquefaction, which is in... A new construction method of pile foundation in composite ground, in which, prior to installing piles, the ground is improved around the heads of the piles in soft ground or ground subject to liquefaction, which is introduced in this paper. This construction method uses a combination of pile foundation construction together with common ground improvement methods, including deep mixing, preloading and sand compaction piling, and it is referred to as the composite ground pile method. Since an artificial ground with relatively high rigidity comparing with that of the original ground was formed around the pile in this method, and the seismic performance has not been made clear, thus the seismic performance of piles in composite ground was systematically analyzed through a series of centrifuge model tests and numerical analyses by using dynamic nonlinear finite element method, and a verification method for the seismic performance of piles in composite ground was proposed on the basis of the experimental and numerical results. 展开更多
关键词 pile foundation composite ground centrifuge model test dynamic nonlinear finite element method.
下载PDF
Propagation characteristics of transient waves in low-strain integrity testing on cast-in-situ concrete thin-wall pipe piles 被引量:2
12
作者 Hanlong LIU Xuanming DING 《Frontiers of Structural and Civil Engineering》 SCIE EI 2009年第2期180-186,共7页
The three-dimensional effects of pile head and the applicability of plane-section assumption are main problems in low-strain dynamic tests on cast-in-situ concrete thin-wall pipe piles.The velocity and displacement re... The three-dimensional effects of pile head and the applicability of plane-section assumption are main problems in low-strain dynamic tests on cast-in-situ concrete thin-wall pipe piles.The velocity and displacement responses were calculated by a theoretical formula deduced by the authors.The frequency and influencing factor of high-frequency interference were analyzed.A numerical method was established to calculate the peak value and arrival time of incoming waves on top of the piles.The regularity along circumferential and the influence of radius or impulse width were studied.The applicability of plane-section assumption was investigated by comparison of velocity responses at different points in the sections at different depths.The waveform of velocity response at different points forked after the first peak,indicating that the propagation of stress waves did not well meet the plane-section assumption. 展开更多
关键词 pipe pile low strain integrity testing dynamic response transient wave three-dimensional effect
原文传递
Prediction of bearing capacity of pile foundation using deep learning approaches
13
作者 Manish KUMAR Divesh Ranjan KUMAR +2 位作者 Jitendra KHATTI Pijush SAMUI Kamaldeep Singh GROVER 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第6期870-886,共17页
The accurate prediction of bearing capacity is crucial in ensuring the structural integrity and safety of pile foundations.This research compares the Deep Neural Networks(DNN),Convolutional Neural Networks(CNN),Recurr... The accurate prediction of bearing capacity is crucial in ensuring the structural integrity and safety of pile foundations.This research compares the Deep Neural Networks(DNN),Convolutional Neural Networks(CNN),Recurrent Neural Networks(RNN),Long Short-Term Memory(LSTM),and Bidirectional LSTM(BiLSTM)algorithms utilizing a data set of 257 dynamic pile load tests for the first time.Also,this research illustrates the multicollinearity effect on DNN,CNN,RNN,LSTM,and BiLSTM models’performance and accuracy for the first time.A comprehensive comparative analysis is conducted,employing various statistical performance parameters,rank analysis,and error matrix to evaluate the performance of these models.The performance is further validated using external validation,and visual interpretation is provided using the regression error characteristics(REC)curve and Taylor diagram.Results from the comparative analysis reveal that the DNN(Coefficient of determination(R^(2))_(training(TR))=0.97,root mean squared error(RMSE)_(TR)=0.0413;R^(2)_(testing(TS))=0.9,RMSE_(TS)=0.08)followed by BiLSTM(R^(2)_(TR)=0.91,RMSE_(TR)=0.782;R^(2)_(TS)=0.89,RMSE_(TS)=0.0862)model demonstrates the highest performance accuracy.It is noted that the BiLSTM model is better than LSTM because the BiLSTM model,which increases the amount of information for the network,is a sequence processing model made up of two LSTMs,one of which takes the input in a forward manner,and the other in a backward direction.The prediction of pile-bearing capacity is strongly influenced by ram weight(having a considerable multicollinearity level),and the effect of the considerable multicollinearity level has been determined for the model based on the recurrent neural network approach.In this study,the recurrent neural network model has the least performance and accuracy in predicting the pile-bearing capacity. 展开更多
关键词 deep learning algorithms high-strain dynamic pile test bearing capacity of the pile
原文传递
Shaking Table Test Study on Dynamic Characteristics of Bridge Foundation Reinforcement on Slopes 被引量:3
14
作者 Lei Da Qi Zhihui +2 位作者 Jiang Guanlu Wang Zhimeng Li Anhong 《Earthquake Research in China》 CSCD 2017年第3期403-413,共11页
With the fast development of bridge construction in mountainous and seismic areas,it is necessary to conduct related research. Based on the design of a shaking table model test,here are the following test results: the... With the fast development of bridge construction in mountainous and seismic areas,it is necessary to conduct related research. Based on the design of a shaking table model test,here are the following test results: the filtering effect exists in soil and is affected by the dynamic constraint conditions,the amplitude is strengthened around the natural frequency and weakened in other frequency bands in the Fourier spectrum. Since the acceleration scaling effect occurred on a sloped surface,the acceleration response decreases from the outside to the inside in soil. The dynamic response is relatively strong near the slip surface in bedrock due to the reflection of seismic waves. The failure mode of landslide is decided by the slope angle and slipping mass distribution, and the test shows the front row stabilizing piles should keep a proper distance from bridge foundation so that seismic resistance can be guaranteed for the bridge foundation. 展开更多
关键词 SHAKING TABLE test Stabilizing pile FILTERING effect dynamic response Failure mode
下载PDF
An Analytical Solution for Wave Propagation in a Pipe Pile with Multiple Defects 被引量:2
15
作者 Xuanming Ding Lubao Luan +2 位作者 Changjie Zheng Guoxiong Mei Hang Zhou 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2020年第2期251-267,共17页
An analytical solution is developed in this paper to conduct the low-strain integrity testing for a pipe pile with multiple defects.The derived solution allows simulating the pipe pile as a three-dimensional model by ... An analytical solution is developed in this paper to conduct the low-strain integrity testing for a pipe pile with multiple defects.The derived solution allows simulating the pipe pile as a three-dimensional model by considering the wave propagation in the vertical,circumferential and radial directions.Analytical solutions of the pile are obtained by the Laplace transform and separation of variables.Accordingly,time-domain responses of the solution are deduced by the inverse Fourier transform numerically.The solution is validated against the published solutions for an intact pile and a pile with a single defect.Parametric studies are conducted to identify and characterize the velocity responses on the top of pipe piles with multiple defects.Numerical results suggest that the reflected waves generated by the deep defects are affected by the secondary reflections from the shallow defects.A new detecting method is proposed to decrease the influence of high-frequency interferences and to predict the defective depth,which suggests putting the receiver at the point of 90°along the circumferential direction. 展开更多
关键词 Wave propagation Pipe pile Multiple defects Low-strain dynamic testing
原文传递
桩-震陷土层耦合作用下变截面单桩动力响应
16
作者 冯忠居 王逸然 +3 位作者 蔡杰 张聪 朱继新 孟莹莹 《振动工程学报》 北大核心 2025年第1期162-171,共10页
为研究不同类型地震波作用下大直径变截面钢管混凝土复合单桩的动力响应规律,依托厦门第二东通道翔安大桥工程,通过室内振动台试验,选取地震动强度为0.15g的5010波、1004波、Kobe波及El‐Centro波,研究大直径变截面钢管混凝土复合单桩... 为研究不同类型地震波作用下大直径变截面钢管混凝土复合单桩的动力响应规律,依托厦门第二东通道翔安大桥工程,通过室内振动台试验,选取地震动强度为0.15g的5010波、1004波、Kobe波及El‐Centro波,研究大直径变截面钢管混凝土复合单桩的桩身加速度、水平位移、弯矩及桩基损伤等变化规律。试验结果表明:不同类型地震波由于其频谱特性不同,大直径变截面钢管混凝土复合单桩的动力响应特性存在差异;桩顶加速度最大值、桩顶水平位移最大值、桩身弯矩最大值均在1004波作用下最大,在Kobe波作用下最小;桩身弯矩最大值均未超过桩基设计抗弯承载力;在地震力的作用下对桩基础的抗弯承载能力进行设计时,应重点考虑软硬土层的分界面处抗弯能力。 展开更多
关键词 大直径变截面桩 振动台试验 震陷场地 动力响应
下载PDF
基于LDRA TESTBED的汇编语言软件测试方法研究 被引量:2
17
作者 尤艺 《航天控制》 CSCD 北大核心 2004年第5期77-81,共5页
在航天型号软件的开发过程中 ,充分的测试是软件质量和可靠性的必要保证。本文以软件代码分析工具─LDBATESTBED为背景 ,详细阐述了汇编程序的单元测试方法 。
关键词 单元测试 静态测试分析 动态测试分析 软件质量度量
下载PDF
高精度钻机自动布孔在石灰石矿山中的应用
18
作者 崔旺 《科技创新与应用》 2025年第2期180-184,共5页
为提升钻孔爆破的智能化水平,降低人员工作强度,提高钻孔质量,矿山以现有的阿特拉斯科普柯D45露天潜孔钻机为目标进行改造,通过在钻机上安装高精度定位系统、倾角仪、深度检测传感器和车载智能终端等设备,建立精准数学模型,结合布孔设... 为提升钻孔爆破的智能化水平,降低人员工作强度,提高钻孔质量,矿山以现有的阿特拉斯科普柯D45露天潜孔钻机为目标进行改造,通过在钻机上安装高精度定位系统、倾角仪、深度检测传感器和车载智能终端等设备,建立精准数学模型,结合布孔设计软件、数字采矿软件,融合智能管控平台,实现露天矿钻机钻孔的自动化和无人化。 展开更多
关键词 钻机 爆破设计 质量化验 高精度定位 网络通信 实时动态测量
下载PDF
Tree growth performance and estimation of wood quality in plantation trials for Maesopsis eminii and Shorea spp.
19
作者 Lina Karlinasari Suhada Andini +3 位作者 Descarlo Worabai Prijanto Pamungkas Sri Wilarso Budi Iskandar Z.Siregar 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第4期1144-1153,共10页
Plantations of tropical species axe becoming an increasingly important source of wood. However, it is important that research trials focus not only on tree growth performance, but also on wood quality. The aims of thi... Plantations of tropical species axe becoming an increasingly important source of wood. However, it is important that research trials focus not only on tree growth performance, but also on wood quality. The aims of this study were to assess the growth performance of six commercially and ecologically important tree species from separate plantation trials in Indonesia and to determine the relationships between tree growth and wood quality in terms of the dynamic modulus of elasticity (MOE) and wood density. Forty-eight 7-year Maesopsis eminii Engl. and thirty-five 9-year specimens (7 each of 5 Shorea spp.) were selected from two trials. The MOE, based on acoustic velocity, was indirectly measured to evaluate wood stiffness. Tree-growth performance was evaluated, and correlations between growth traits and acoustic velocity as well as density and wood stiffness properties were estimated. The growth performance of M. eminii in terms of tree volume was significantly different in three different cate- gories of growth (i.e. fast, medium, slow). Of the five Shorea spp. studied, Shorea leprosula Miq. had the highest growth rate, as expected since it is known to be a fastgrowing Shorea species. Indirect measurement of wood quality by means of non-destructive ultrasonic methods showed a weak negative correlation between tree volume and acoustic velocity and dynamic MOE. Although each fast-growing tree could reach a merchantable size faster than other varieties or species, wood traits of various species tested were not significantly different based on tree growth rate performance. The findings from this study could be used to improve selection criteria in future breeding trials; indirect measurements of the dynamic modulus of elasticity can be used in mass pre-selection of genetic materials, to choose the most-promising material for in-depth evaluation. 展开更多
关键词 dynamic MOE Non-destructive test Selection criteria Tree growth Wood quality Maesopsiseminii Shorea spp
下载PDF
液化场地大直径变截面单桩动力响应研究 被引量:1
20
作者 冯忠居 段久琴 +3 位作者 张聪 林立华 赵瑞欣 王逸然 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期56-67,共12页
为研究不同地震动强度下液化场地大直径变截面单桩的动力响应规律,基于振动台试验,选取5010波,在地震动强度0.10g~0.45g作用下,研究液化场地砂土孔压比和大直径变截面单桩桩顶水平位移、桩身弯矩、桩身加速度时程响应及桩基损伤等变化规... 为研究不同地震动强度下液化场地大直径变截面单桩的动力响应规律,基于振动台试验,选取5010波,在地震动强度0.10g~0.45g作用下,研究液化场地砂土孔压比和大直径变截面单桩桩顶水平位移、桩身弯矩、桩身加速度时程响应及桩基损伤等变化规律.试验结果表明:饱和砂土孔压比随着地震动强度的增大上升明显,地震动强度≥0.30g时,饱和砂土孔压比稳定值在0.9附近,此时砂土完全液化;在0.45g地震动强度作用下,桩身加速度、桩顶水平位移及桩身弯矩均达到最大;桩身不同位置处加速度峰值出现时刻均滞后于输入地震波加速度峰值出现时刻,且桩顶及变截面的加速度响应比桩端的响应更弱;不同地震动强度作用下,桩身弯矩最大值均出现在液化土层和非液化土层分界处,且变截面处弯矩小于土层分界面处;地震动强度达到0.30g时,大直径变截面单桩桩身发生损伤.因此,液化场地下大直径变截面桥梁单桩基础抗震设计时,应该重点考虑饱和砂土层分界处、变截面处的抗弯能力,以确保单桩桩身强度满足抗震要求. 展开更多
关键词 岩土工程 变截面单桩 液化场地 动力响应 振动台试验 抗震设计
下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部