A structure scheme of a pile-based breakwater with integrated oscillating water column(OWC)energy conversion chamber was proposed,and four structure forms had been designed.Based on the physical test,the variations of...A structure scheme of a pile-based breakwater with integrated oscillating water column(OWC)energy conversion chamber was proposed,and four structure forms had been designed.Based on the physical test,the variations of the reflected wave height,the transmitted wave height,the air velocity at the outlet of the chamber,the air pressure and the wave height in the air chamber were studied under the conditions of different wave heights,periods,with or without elliptical front wall and the baffles on both sides of the chamber.Moreover,based on the results,the changes and relationship between the wave-eliminating effect and energy conversion effect of the scheme were analyzed.In general,it turns out,the transmission coefficients of the four structure forms are kept below 0.5.Furthermore,the transmission coefficients of the structural forms G2,G3,and G4 were all smaller than 0.4,and it is only 0.1 at its smallest.Thereinto,in general,the structure form G4 has the best wave-eliminating and energy conversion performance.At the same time,when the wave steepness is 0.066,the energy conversion and wave dissipation effect of the four structure forms is the best.The research results could be provided as the reference for the design structure selection of pile-based breakwater with integrated OWC energy conversion chamber.展开更多
A series of well-designed full-scale destructive load tests were conducted on six bored piles to investigate the influence of loose debris at the pile tip on end resistance. The results show that soft debris below the...A series of well-designed full-scale destructive load tests were conducted on six bored piles to investigate the influence of loose debris at the pile tip on end resistance. The results show that soft debris below the pile tip will weaken the mobilization of end resistance. The ultimate tip resistance of post-grouted pile is 2.05 times that of the pile without post-grouting and the ultimate tip resistance in the second load cycle is 2.31 times that of pile in the first load cycle. The relationship between unit end resistance and displacement follows a linear model and a bilinear mode in the first load cycle and the second load cycle, respectively, whereas the unit end resistance-displacement response of post-grouted bored pile can be simulated using a bilinear mode. The critical end resistance ranges between 2 000 kN and 3 000 kN and the critical displacement ranges between 2.5 mm and 4.5 mm in the bilinear mode. As for piles rested on moderately-weathered peliticsiltstone, the socketed length has no effect on the end resistance because of the existence of loose debris.展开更多
A field study on the behavior of three destructive piles in soft soils subjected to axial load was presented.All the three piles with different diameters were base-grouted and installed with strain gauges along the pi...A field study on the behavior of three destructive piles in soft soils subjected to axial load was presented.All the three piles with different diameters were base-grouted and installed with strain gauges along the piles.The complete load transfer behavior of the base-grouted pile was analyzed using measured results.Moreover,the thresholds of the relative pile-soil displacement for fully mobilizing skin frictions in different soils were investigated,and pile tip displacements needed to fully mobilize tip resistances were analyzed.The results of the full-scale loading tests show that the skin frictions are close to the ultimate values when the pile-soil relative displacements are 1%-3% of pile diameter,and the pile tip displacements needed to fully mobilize the tip resistances are about 1.3%-2.0% of pile diameter.The load transmission curve of the soils around the pile tip corresponds to a softening model when the pile is loaded to failure.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51739010)。
文摘A structure scheme of a pile-based breakwater with integrated oscillating water column(OWC)energy conversion chamber was proposed,and four structure forms had been designed.Based on the physical test,the variations of the reflected wave height,the transmitted wave height,the air velocity at the outlet of the chamber,the air pressure and the wave height in the air chamber were studied under the conditions of different wave heights,periods,with or without elliptical front wall and the baffles on both sides of the chamber.Moreover,based on the results,the changes and relationship between the wave-eliminating effect and energy conversion effect of the scheme were analyzed.In general,it turns out,the transmission coefficients of the four structure forms are kept below 0.5.Furthermore,the transmission coefficients of the structural forms G2,G3,and G4 were all smaller than 0.4,and it is only 0.1 at its smallest.Thereinto,in general,the structure form G4 has the best wave-eliminating and energy conversion performance.At the same time,when the wave steepness is 0.066,the energy conversion and wave dissipation effect of the four structure forms is the best.The research results could be provided as the reference for the design structure selection of pile-based breakwater with integrated OWC energy conversion chamber.
基金Project(51078330) supported by the National Natural Science Foundation of ChinaProject(2012MS21339) supported by China Postdoctoral Science FoundationProject(2012GN012) supported by the Independent Innovation Foundation of Shandong University, China
文摘A series of well-designed full-scale destructive load tests were conducted on six bored piles to investigate the influence of loose debris at the pile tip on end resistance. The results show that soft debris below the pile tip will weaken the mobilization of end resistance. The ultimate tip resistance of post-grouted pile is 2.05 times that of the pile without post-grouting and the ultimate tip resistance in the second load cycle is 2.31 times that of pile in the first load cycle. The relationship between unit end resistance and displacement follows a linear model and a bilinear mode in the first load cycle and the second load cycle, respectively, whereas the unit end resistance-displacement response of post-grouted bored pile can be simulated using a bilinear mode. The critical end resistance ranges between 2 000 kN and 3 000 kN and the critical displacement ranges between 2.5 mm and 4.5 mm in the bilinear mode. As for piles rested on moderately-weathered peliticsiltstone, the socketed length has no effect on the end resistance because of the existence of loose debris.
基金Project(51078330) supported by the National Natural Science Foundation of China
文摘A field study on the behavior of three destructive piles in soft soils subjected to axial load was presented.All the three piles with different diameters were base-grouted and installed with strain gauges along the piles.The complete load transfer behavior of the base-grouted pile was analyzed using measured results.Moreover,the thresholds of the relative pile-soil displacement for fully mobilizing skin frictions in different soils were investigated,and pile tip displacements needed to fully mobilize tip resistances were analyzed.The results of the full-scale loading tests show that the skin frictions are close to the ultimate values when the pile-soil relative displacements are 1%-3% of pile diameter,and the pile tip displacements needed to fully mobilize the tip resistances are about 1.3%-2.0% of pile diameter.The load transmission curve of the soils around the pile tip corresponds to a softening model when the pile is loaded to failure.