期刊文献+
共找到411篇文章
< 1 2 21 >
每页显示 20 50 100
Dynamic soil arching in piled embankment under train load of high-speed railways
1
作者 Niu Tingting Yang Yule +2 位作者 Ma Qianli Zou Jiuqun Lin Bin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期719-730,共12页
Piled embankments have many advantages that have been applied in high-speed railway construction engineering.However,the load transfer mechanism of piled embankments,such as soil arching and tension membranes,is still... Piled embankments have many advantages that have been applied in high-speed railway construction engineering.However,the load transfer mechanism of piled embankments,such as soil arching and tension membranes,is still unclear,especially under dynamic loads.To investigate the soil arching and tension membrane under dynamic train loads on high-speed railways,a large-scale piled embankment model test with X-shaped piles as vertical reinforcement was performed,in which twenty-eight earth pressure cells were installed in the piled embankment and an M-shaped wave was adopted to simulate the high-speed railway train load.The results show that dynamic soil arching only occurs when two bogies of a carriage pass by and disappears at other times.The dynamic soil arching and membrane effect are the most significant under the concrete base.The arching height,stress concentration ratio and pile-soil load sharing ratio have a minimal value at 25 Hz.The dynamic soil arching degrades severely at 25 Hz,whose height at 25 Hz is only 0.35 times that at 5 Hz.The arching height fluctuates over a narrow range with increasing loading amplitude.The stress concentration ratio and the pile-soil load sharing ratio increase monotonically as the loading amplitude increases. 展开更多
关键词 dynamic soil arching membrane effect piled embankment train load model test
下载PDF
The Effect of Jet Grouting on Enhancing the Lateral Behavior of Piled Raft Foundation in Soft Clay(Numerical Investigation)
2
作者 Mostafa Esawwaf Wasiem Azzam Naha Eghrouby 《Advances in Geological and Geotechnical Engineering Research》 2023年第1期24-39,共16页
Soft clay soils cannot usually support large lateral loads,so clay soils must be improved to increase lateral resistance.The jet grouting method is one of the methods used to improve weak soils.In this paper,a series ... Soft clay soils cannot usually support large lateral loads,so clay soils must be improved to increase lateral resistance.The jet grouting method is one of the methods used to improve weak soils.In this paper,a series of 3D finite element studies were conducted using Plaxis 3D software to investigate the lateral behavior of piled rafts in improved soft clay utilizing the jet grouting method.Parametric models were analyzed to explore the influence of the width,depth,and location of the grouted clay on the lateral resistance.Additionally,the effect of vertical loads on the lateral behavior of piled rafts in grouted clay was also investigated.The numerical results indicate that the lateral resistance increases by increasing the dimensions of the jet grouting beneath and around the piled raft.Typical increases in lateral resistance are 11.2%,65%,177%,and 35%for applying jet grouting beside the raft,below the raft,below and around the raft,and grouted strips parallel to lateral loads,respectively.It was also found that increasing the depth of grouted clay enhances lateral resistance up to a certain depth,about 6 to 10 times the pile diameter(6 to 10D).In contrast,the improvement ratio is limited beyond 10D.Furthermore,the results demonstrate that the presence of vertical loads has a significant impact on sideward resistance. 展开更多
关键词 Finite element analysis Plaxis 3D Lateral bearing capacity Jet grouting piled raft Soil improvement
下载PDF
Model tests on XCC-piled embankment under dynamic train load of high-speed railways 被引量:6
3
作者 Niu Tingting Liu Hanlong +1 位作者 Ding Xuanming Zheng Changjie 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第3期581-594,共14页
Piled embankments,which offer many advantages,are increasingly popular in construction of high-speed railways in China.Although the performance of piled embankment under static loading is well-known,the behavior under... Piled embankments,which offer many advantages,are increasingly popular in construction of high-speed railways in China.Although the performance of piled embankment under static loading is well-known,the behavior under the dynamic train load of a high-speed railway is not yet understood.In light of this,a heavily instrumented piled embankment model was set up,and a model test was carried out,in which a servo-hydraulic actuator outputting M-shaped waves was adopted to simulate the process of a running train.Earth pressure,settlement,strain in the geogrid and pile and excess pore water pressure were measured.The results show that the soil arching height under the dynamic train load of a high-speed railway is shorter than under static loading.The growth trend for accumulated settlement slowed down after long-term vibration although there was still a tendency for it to increase.Accumulated geogrid strain has an increasing tendency after long-term vibration.The closer the embankment edge,the greater the geogrid strain over the subsoil.Strains in the pile were smaller under dynamic train loads,and their distribution was different from that under static loading.At the same elevation,excess pore water pressure under the track slab was greater than that under the embankment shoulder. 展开更多
关键词 piled embankment model test dynamic train load of high-speed railways XCC-pile M-shaped wave
下载PDF
Physical modeling of behaviors of cast-in-place concrete piled raft compared to free-standing pile group in sand 被引量:1
4
作者 Mehdi Sharafkhah Issa Shooshpasha 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第4期703-716,共14页
Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies i... Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies indicated that this method is too conservative. Only when the pile cap is elevated from the ground level,the raft bearing contribution can be neglected. In a piled raft foundation, pileesoileraft interaction is complicated. Although several numerical studies have been carried out to analyze the behaviors of piled raft foundations, very few experimental studies are reported in the literature. The available laboratory studies mainly focused on steel piles. The present study aims to compare the behaviors of piled raft foundations with free-standing pile groups in sand, using laboratory physical models. Cast-in-place concrete piles and concrete raft are used for the tests. The tests are conducted on single pile, single pile in pile group, unpiled raft, free-standing pile group and piled raft foundation. We examine the effects of the number of piles, the pile installation method and the interaction between different components of foundation. The results indicate that the ultimate bearing capacity of the piled raft foundation is considerably higher than that of the free-standing pile group with the same number of piles. With installation of the single pile in the group, the pile bearing capacity and stiffness increase. Installation of the piles beneath the raft decreases the bearing capacity of the raft. When the raft bearing capacity is not included in the design process, the allowable bearing capacity of the piled raft is underestimated by more than 200%. This deviation intensifies with increasing spacing of the piles. 展开更多
关键词 Free-standing pile group piled raft Pileesoileraft interaction Physical modeling Cast-in-place concrete piles
下载PDF
Optimization Mathematical Model of Pile Forces for Offshore Piled Breasting Dolphins 被引量:1
5
作者 周锡礽 王乐芹 +1 位作者 王晖 朱福明 《海洋工程:英文版》 EI 2004年第4期567-575,共9页
An optimization mathematical model of the pile forces for piled breasting dolphins in the open sea under various loading conditions is presented. The optimum layout with the well distributed pile forces and the least ... An optimization mathematical model of the pile forces for piled breasting dolphins in the open sea under various loading conditions is presented. The optimum layout with the well distributed pile forces and the least number of piles is achieved by the multiplier penalty function method. Several engineering cases have been calculated and compared with the result of the conventional design method. It is shown that the number of piles can be reduced at least by 10%~20% and the piles' bearing state is improved greatly. 展开更多
关键词 piled breasting dolphin mathematical model multiplier penalty function method optimization design
下载PDF
Simplified analytical solution for stress concentration ratio of piled embankments incorporating pile–soil interaction 被引量:1
6
作者 Qiang Luo Ming Wei +1 位作者 Qingyuan Lu Tengfei Wang 《Railway Engineering Science》 2021年第2期199-210,共12页
Piled embankments have been extensively used for high-speed rail over soft soils because of their effectiveness in minimizing differential settlement and shortening the construction period.Stress concentration ratio,d... Piled embankments have been extensively used for high-speed rail over soft soils because of their effectiveness in minimizing differential settlement and shortening the construction period.Stress concentration ratio,defined as the ratio of vertical stress carried by pile heads(or pile caps if applicable)to that by adjacent soils,is a fundamental parameter in the design of piled embankments.In view of the complicated load transfer mechanism in the framework of embankment system,this paper presents a simplified analytical solution for the stress concentration ratio of rigid pile-supported embankments.In the derivation,the effects of cushion stiffness,pile–soil interaction,and pile penetration behavior are considered and examined.A modified linearly elastic-perfectly plastic model was used to analyze the mechanical response of a rigid pile–soil system.The analytical model was verified against field data and the results of numerical simulations from the literature.According to the proposed method,the skin friction distribution,pile–soil relative displacement,location of neural point,and differential settlement between the pile head(or cap)and adjacent soils can be determined.This work serves as a fast algorithm for initial and reasonable approximation of stress concentration ratio on the design aspects of piled embankments. 展开更多
关键词 piled embankments Pile-soil interaction Pile penetration CUSHION Rigid pile High-speed railway
下载PDF
3D FE Analysis of Effect of Ground Subsidence and Piled Spacing on Ultimate Bearing Capacity of Piled Raft and Axial Force of Piles in Piled Raft 被引量:2
7
作者 Tuan Van Tran Makoto Kimura Tirawat Boonyatee 《Open Journal of Civil Engineering》 2012年第4期206-213,共8页
The effects of ground subsidence and piled spacing on axial force of piles in squared piled rafts were investigated using numerical analysis. Two cases of piled rafts in soft clay including case 1 (s = 2d) and case 2 ... The effects of ground subsidence and piled spacing on axial force of piles in squared piled rafts were investigated using numerical analysis. Two cases of piled rafts in soft clay including case 1 (s = 2d) and case 2 (s = 4d) with s and d were piled spacing and piled diameter respectively were considered in this study. Undrained (without ground water pumping) and drained (with ground water pumping) conditions were applied in each case in order to evaluate variations of ultimate bearing capacity of piled raft and axial force of the piles in piled raft. The results showed that ultimate bearing capacity increased about 25% for undrained condition and about 32% for drained condition when piled spacing increased from 2d to 4d. In the same piled spacing, axial force of the piles increased about 9% for piled spacing of 2d and 7% for piled spacing of 4d when drained condition was applied. When piled spacing increased 2 times (2d to 4d), the axial force of piles increased about 7% for undrained condition and about 5% for drained condition. 展开更多
关键词 Ground SUBSIDENCE piled RAFT piled SPACING BEARING Capacity AXIAL FORCE 3D FE Simulation
下载PDF
Influence of pile spacing on seismic response of piled raft in soft clay: centrifuge modeling
8
作者 Yang Jun Yang Min Chen Haibing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第4期719-733,共15页
In order to study the infl uence of pile spacing on the seismic response of piled raft in soft clay, a series of shaking table tests were conducted by using a geotechnical centrifuge. The dynamic behavior of accelerat... In order to study the infl uence of pile spacing on the seismic response of piled raft in soft clay, a series of shaking table tests were conducted by using a geotechnical centrifuge. The dynamic behavior of acceleration, displacement and internal forces was examined. The test results indicate that the seismic acceleration responses of models are generally greater than the surrounding soil surface in the period ranges of 2–10 seconds. Foundation instant settlements for 4×4 and 3×3 piled raft (with pile spacing equal to 4 and 6 times pile diameter) are somewhat close to each other at the end of the earthquake, but reconsolidation settlements are greater for 3×3 piled raft. The seismic acceleration of superstructure, the uneven settlement of the foundation and the maximum bending moment of pile are relatively lower for 3×3 piled raft. Successive earthquakes lead to the softening behavior of soft clay, which causes a reduction of the pile bearing capacity and thus loads are transferred from the pile group to the raft. For the case of a 3×3 piled raft, there is relatively smaller change of the load sharing ratio of the pile group and raft after the earthquake and the distribution of maximum bending moments at the pile head is more uniform. 展开更多
关键词 piled raft PILE SPACING soft clay dynamic CENTRIFUGE model test seismic response SUBSIDENCE load sharing bending MOMENT
下载PDF
Stochastic Response Analysis of Piled Offshore Platform Excited by Stationary Filtered White Noise
9
作者 Luo, CX Wu, ZP 《China Ocean Engineering》 SCIE EI 1997年第1期29-42,共14页
In this paper, the analysis method of stochastic response of piled offshore platform excited by stationary filtered white noise is presented. With this method, the strong ground motion is considered as three direction... In this paper, the analysis method of stochastic response of piled offshore platform excited by stationary filtered white noise is presented. With this method, the strong ground motion is considered as three direction stationary filtered white noise process, the theoretic solutions of three special integration equations are derived with the residue theorem, and the expression of response nodal displacements and member forces of offshore platform excited by the stationary filtered white noise is put forward. The stochastic response of a piled offshore platform excited by the stationary filtered white noise, which is located 114.3 m in water depth, is computed. The results are compared with those obtained with the response spectrum analysis method and the stationary white noise model analysis method, and the corresponding conclusion is drawn. 展开更多
关键词 stochastic response piled offshore platform stationary filtered white noise stochastic model response spectrum
下载PDF
Deep Foundation Pit Excavations Adjacent to Disconnected Piled Rafts: A Review on Risk Control Practice
10
作者 Bantayehu Uba Uge Yuancheng Guo 《Open Journal of Civil Engineering》 2020年第3期270-300,共31页
Foundation pit excavation engineering is an old subject full of decision making. Yet, it still deserves further research due to the associated high failure cost and the complexity of the geological conditions and/or t... Foundation pit excavation engineering is an old subject full of decision making. Yet, it still deserves further research due to the associated high failure cost and the complexity of the geological conditions and/or the surrounding existing infrastructure around it. This article overviews the risk control practice of foundation pit excavation projects in close proximity to <span style="font-family:Verdana;">existing</span><span style="font-family:Verdana;"> disconnected piled raft. More focus is given to geotechnical aspects. The review begins with achievements to ensure excavation performance </span><span style="font-family:Verdana;">requirements,</span><span style="font-family:Verdana;"> and follows to discuss the complex </span><span style="font-family:Verdana;">soil structure</span><span style="font-family:Verdana;"> interaction involved among the fundamental components</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">: </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">the retaining wall, mat, piles, cushion, and the soil. After bringing consensus points to practicing engineers and </span><span style="font-family:Verdana;">decision makers</span><span style="font-family:Verdana;">, it then suggests possible future research directions.</span></span></span></span> 展开更多
关键词 Deep Foundation Pit Excavation Disconnected piled Raft Foundation Risk Control Observational Method
下载PDF
The Way They Piled up Their Wealth
11
作者 Song Tiejun 《China's Foreign Trade》 2000年第2期20-21,27,共3页
AarchManMustHaveOneMillionYuanAttheelldof"the197()s,Chinesepeopletirstencounteredthenewteleof"amillionaire".Thetilnl"AMillioflPoundBallknote"adaptedfyomMarkTWain'snovel,Cleatedasellsationa... AarchManMustHaveOneMillionYuanAttheelldof"the197()s,Chinesepeopletirstencounteredthenewteleof"amillionaire".Thetilnl"AMillioflPoundBallknote"adaptedfyomMarkTWain'snovel,CleatedasellsationamongChineseaudiellces.Thatmagicbanknotecouldalterthetoteofthem... 展开更多
关键词 In The Way They piled up Their Wealth
下载PDF
WALLS PILED UP WITH HUMAN SKULLS IN NORTH TIBET
12
《China's Tibet》 2001年第3期40-41,共2页
关键词 WALLS piled UP WITH HUMAN SKULLS IN NORTH TIBET
下载PDF
Stochastic Response Analysis of Piled Offshore Platforms to Earthquake Load 被引量:1
13
作者 Zhang, Lifu Luo, Chuanxin 《China Ocean Engineering》 SCIE EI 1993年第2期177-186,共10页
In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the st... In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the strong ground motion is considered as three dimensional stationary white noise process and the pile-soil interaction and water-structure interaction are considered. The stochastic response of a typical platform to earthquake load has been computed with this method and the results compared with those obtained with the response spectrum analysis method. The comparison shows that the stochastic analysis method of the response of piled platforms to earthquake load is suitable for this kind of analysis. 展开更多
关键词 Dynamic loads Dynamic response Earthquake resistance Equations of motion Finite element method Fluid structure interaction Pile foundations Seismic waves Soil structure interactions Spectrum analysis Stochastic control systems Vibrations (mechanical)
下载PDF
Visualization of the formation and features of soil arching within a piled embankment by discrete element method simulation 被引量:5
14
作者 Han-jiang LAI Jun-jie ZHENG +1 位作者 Rong-jun ZHANG Ming-juan CUI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2016年第10期803-817,共15页
Piled embankments are widely used in highway and railway engineering due to their economy and efficiency inovercoming several issues encountered in constructing embankments over weak soils. Soil arching, caused by the... Piled embankments are widely used in highway and railway engineering due to their economy and efficiency inovercoming several issues encountered in constructing embankments over weak soils. Soil arching, caused by the pile-subsoilrelative displacement (△s), plays an important role in reducing the embankment load falling on weak soil, however, the funda-mental characteristics (e.g., formation and features) of soil arching remain poorly understood. In this study, a series of discreteelement method (DEM) modellings are performed to study the formation and features of soil arching with the variation of As inpiled embankments with or without geosynthetic reinforcement. Firstly, calibration for the modelling parameters is carried out bycomparing the DEM results with the experimental data obtained from the existing literature. Secondly, the analysis of the macro-and micro-behaviours is performed in detail. Finally, a parametric study is conducted in an effort to identify the influences of threekey factors on soil arching: the friction coefficient of the embankment fill (f), the embankment height (h), and the pile clear spacing(s-a). Numerical results indicate that △s is a key factor governing the formation and features of soil arching in embankments. Tobe specific, soil arching gradually evolves from two inclined shear planes at a small △s to a hemispherical arch at a relatively largeAs. Then, with a continuous increase in △s, the soil arching height gradually increases and finally approaches a constant value of0.8(s-a) (i.e., the maximum soil arching height). For a given case, the higher the soil arching height, the greater the degree of soilarching effect. The parametric study shows that the friction coefficient of the embankment fill has a negligible influence on theformation and features of soil arching. However, embankment height is a key factor governing the formation and features of soilarching. In addition, pile clear spacing has a significant effect on the formation of soil arching, but not on its features. 展开更多
关键词 piled embankment Numerical simulation DISCRETE element method (DEM) Soil arching Formation Features
原文传递
Innovative piled raft foundations design using artificial neural network 被引量:1
15
作者 Meisam RABIEI Asskar Janalizadeh CHOOBBASTI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2020年第1期138-146,共9页
Studying the piled raft behavior has been the subject of many types of research in the field of geotechnical engineering.Several studies have been conducted to understand the behavior of these types of foundations,whi... Studying the piled raft behavior has been the subject of many types of research in the field of geotechnical engineering.Several studies have been conducted to understand the behavior of these types of foundations,which are often used for uniform loading on the raft and piles with the same length,while generally the transition load from the upper structure to the foundation is non-uniform and the choice of uniform length for piles in the above model will not be optimally economic and practical.The most common method in identifying the behavior of piled rafts is the use of theoretical relationships and software analyses.More precise identification of this type of foundation behavior can be very difficult due to several influential parameters and interaction of set behavior,and it will be done by doing time-consuming computer analyses or costly full-scale physical modeling.In the meantime,the technique of artificial neural networks can be used to achieve this goal with minimum time consumption,in which data from physical and numerical modeling can be used for network learning.One of the advantages of this method is the speed and simplicity of using it.In this paper,a model is presented based on multi-layer perceptron artificial neural network.In this model pile diameter,pile length,and pile spacing is considered as an input parameter that can be used to estimate maximum settlement,maximum differential settlement,and maximum raft moment.By this model,we can create an extensive domain of results for optimum system selection in the desired piled raft foundation.Results of neural network indicate its proper ability in identifying the piled raft behavior.The presented procedure provides an interesting solution and economically enhancing the design of the piled raft foundation system.This innovative design method reduces the time spent on software analyses. 展开更多
关键词 INNOVATIVE DESIGN piled RAFT FOUNDATION NEURAL network optimization
原文传递
Experimental study on seismic reinforcement of bridge foundation on silty clay landslide with inclined interlayer
16
作者 Lei Da Xiao Hanmo +3 位作者 Ran Jianhua Luo Bin Jiang Guanlu Xue Tianlang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期193-207,共15页
A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and ... A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and anti-slide piles were analyzed in different loading conditions.The dynamic response law of a silty clay landslide with an inclined interlayer was summarized.The spacing between the rear anti-slide piles and bridge foundation should be reasonably controlled according to the seismic fortification requirements,to avoid the two peaks in the forced deformation of the bridge foundation piles.The“blocking effect”of the bridge foundation piles reduced the deformation of the forward anti-slide piles.The stress-strain response of silty clay was intensified as the vibration wave field appeared on the slope.Since the vibration intensified,the thrust distribution of the landslide underwent a process of shifting from triangle to inverted trapezoid,the difference in the acceleration response between the bearing platform and silty clay landslide tended to decrease,and the spectrum amplitude near the natural vibration frequency increased.The rear anti-slide piles were able to slow down the shear deformation of the soil in front of the piles and avoid excessive acceleration response of the bridge foundation piles. 展开更多
关键词 silty clay landslide inclined interlayer shaking table test anti-slide pile bridge foundation pile
下载PDF
Response in piled raft foundation of tall chimneys under along-wind load incorporating flexibility of soil 被引量:1
17
作者 B. R. JAYALEKSHMI S.V. JISHA R. SHIVASHANKAR 《Frontiers of Structural and Civil Engineering》 CSCD 2015年第3期307-322,共16页
The present paper deals with the numerical analysis of tall reinforced concrete chimneys with piled raft foundation subjected to along-wind loads considering the flexibility of soil. The analysis was carded out using ... The present paper deals with the numerical analysis of tall reinforced concrete chimneys with piled raft foundation subjected to along-wind loads considering the flexibility of soil. The analysis was carded out using finite element method on the basis of direct method of soil-structure interaction (SSI). The linear elastic material behavior was assumed for chimney, piled raft and soil. Four different material properties of soil stratum were selected in order to study the effect of SSI. The chimney elevation and the thickness of raft of piled raft foundation were also varied for the parametric study. The chimneys were assumed to be located in terrain category 2 and subjected to a maximum wind speed of 50 m/s as per IS:875 (Part 3)-1987. The along-wind loads were computed according to IS:4998 (Part 1)-1992. The base moments of chimney evaluated from the S SI analysis were compared with those obtained as per IS:4998 (Part 1)-1992. The tangential and radial bending moments of raft of piled raft foundation were evaluated through SSI analysis and compared with those obtained from conventional analysis as per IS:I 1089-1984, assuming rigidity at the base of the raft foundation. The settlements of raft of piled raft foundation, deflection of pile and moments of the pile due to interaction with different soil stratum were also evaluated. From the analysis, considerable reduction in the base moment of chimney due to the effect of SSI is observed. Higher radial moments and lower tangential moments were obtained for lower elevation chimneys with piled raft resting on loose sand when compared with conventional analysis results. The effect of SSI in the response of the pile is more significant when the structure-foundation system interacts with loose sand. 展开更多
关键词 finite element method piled raft tall chimney soil-structure interaction along-wind load
原文传递
Pile foundation in alternate layered liquefiable and non-liquefiable soil deposits subjected to earthquake loading
18
作者 Praveen Huded M Suresh R Dash 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期359-376,共18页
Pile foundations are still the preferred foundation system for high-rise structures in earthquake-prone regions.Pile foundations have experienced failures in past earthquakes due to liquefaction.Research on pile found... Pile foundations are still the preferred foundation system for high-rise structures in earthquake-prone regions.Pile foundations have experienced failures in past earthquakes due to liquefaction.Research on pile foundations in liquefiable soils has primarily focused on the pile foundation behavior in two or three-layered soil profiles.However,in natural occurrence,it may occur in alternative layers of liquefiable and non-liquefiable soil.However,the experimental and/or numerical studies on the layered effect on pile foundations have not been widely addressed in the literature.Most of the design codes across the world do not explicitly mention the effect of sandwiched non-liquefiable soil layers on the pile response.In the present study,the behavior of an end-bearing pile in layered liquefiable and non-liquefiable soil deposit is studied numerically.This study found that the kinematic bending moment is higher and governs the design when the effect of the sandwiched non-liquefied layer is considered in the analysis as opposed to when its effect is ignored.Therefore,ignoring the effect of the sandwiched non-liquefied layer in a liquefiable soil deposit might be a nonconservative design approach. 展开更多
关键词 pile foundation LIQUEFACTION alternately layered soil fixity effect layered effect
下载PDF
Thermal performance of cast-in-place piles with artificial ground freezing in permafrost regions
19
作者 WANG Xinbin CHEN Kun +3 位作者 YU Qihao GUO Lei YOU Yanhui JIN Mingyang 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1307-1328,共22页
During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing cap... During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing capacity of the pile is quite small before the full freeze-back,the quick refreezing of the native soils surrounding the cast-in-place pile has become the focus of the infrastructure construction in permafrost.To solve this problem,this paper innovatively puts forward the application of the artificial ground freezing(AGF)method at the end of the curing period of cast-in-place piles in permafrost.A field test on the AGF was conducted at the Beiluhe Observation and Research Station of Frozen Soil Engineering and Environment(34°51.2'N,92°56.4'E)in the Qinghai Tibet Plateau(QTP),and then a 3-D numerical model was established to investigate the thermal performance of piles using AGF under different engineering conditions.Additionally,the long-term thermal performance of piles after the completion of AGF under different conditions was estimated.Field experiment results demonstrate that AGF is an effective method to reduce the refreezing time of the soil surrounding the piles constructed in permafrost terrain,with the ability to reduce the pile-soil interface temperatures to below the natural ground temperature within 3 days.Numerical results further prove that AGF still has a good cooling effect even under unfavorable engineering conditions such as high pouring temperature,large pile diameter,and large pile length.Consequently,the application of this method is meaningful to save the subsequent latency time and solve the problem of thermal disturbance in pile construction in permafrost.The research results are highly relevant for the spread of AGF technology and the rapid building of pile foundations in permafrost. 展开更多
关键词 Permafrost engineering Cast-in-place pile Artificial ground freezing Thermal performance.
下载PDF
Centrifuge modeling of unreinforced and multi-row stabilizing piles reinforced landslides subjected to reservoir water level fluctuation
20
作者 Chenyang Zhang Yueping Yin +3 位作者 Hui Yan Sainan Zhu Ming Zhang Luqi Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1600-1614,共15页
With the construction of the Three Gorges Reservoir dam,frequent reservoir landslide events have been recorded.In recent years,multi-row stabilizing piles(MRSPs)have been used to stabilize massive reservoir landslides... With the construction of the Three Gorges Reservoir dam,frequent reservoir landslide events have been recorded.In recent years,multi-row stabilizing piles(MRSPs)have been used to stabilize massive reservoir landslides in China.In this study,two centrifuge model tests were carried out to study the unreinforced and MRSP-reinforced slopes subjected to reservoir water level(RWL)operation,using the Taping landslide as a prototype.The results indicate that the RWL rising can provide lateral support within the submerged zone and then produce the inward seepage force,eventually strengthening the slope stability.However,a rapid RWL drawdown may induce outward seepage forces and a sudden debuttressing effect,consequently reducing the effective soil normal stress and triggering partial pre-failure within the RWL fluctuation zone.Furthermore,partial deformation and subsequent soil structure damage generate excess pore water pressures,ultimately leading to the overall failure of the reservoir landslide.This study also reveals that a rapid increase in the downslope driving force due to RWL drawdown significantly intensifies the lateral earth pressures exerted on the MRSPs.Conversely,the MRSPs possess a considerable reinforcement effect on the reservoir landslide,transforming the overall failure into a partial deformation and failure situated above and in front of the MRSPs.The mechanical transfer behavior observed in the MRSPs demonstrates a progressive alteration in relation to RWL fluctuations.As the RWL rises,the mechanical states among MRSPs exhibit a growing imbalance.The shear force transfer factor(i.e.the ratio of shear forces on pile of the n th row to that of the first row)increases significantly with the RWL drawdown.This indicates that the mechanical states among MRSPs tend toward an enhanced equilibrium.The insights gained from this study contribute to a more comprehensive understanding of the failure mechanisms of reservoir landslides and the mechanical behavior of MRSPs in reservoir banks. 展开更多
关键词 Reservoir landslide Failure mechanism Multi-row stabilizing piles Mechanical behavior
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部