This paper delves into the critical aspects of sheet pile walls in civil engineering, highlighting their versatility in soil protection, retention, and waterproofing, all while emphasizing sustainability and efficient...This paper delves into the critical aspects of sheet pile walls in civil engineering, highlighting their versatility in soil protection, retention, and waterproofing, all while emphasizing sustainability and efficient construction practices. The paper explores two fundamental approaches to sheet pile design: limit equilibrium methods and numerical techniques, with a particular focus on finite element analysis. Utilizing the robust PLAXIS 2016 calculation code based on the finite element method and employing a simplified elastoplastic model (Mohr-Coulomb), this study meticulously models the interaction between sheet pile walls and surrounding soil. The research offers valuable insights into settlement and deformation patterns that adjacent buildings may experience during various construction phases. The central objective of this paper is to present the study’s findings and recommend potential mitigation measures for settlement effects on nearby structures. By unraveling the intricate interplay between sheet pile wall construction and neighboring buildings, the paper equips engineers and practitioners to make informed decisions that ensure the safety and integrity of the built environment. In the context of the Cotonou East Corniche development, the study addresses the limitations of existing software, such as RIDO, in predicting settlements and deformations affecting nearby buildings due to the substantial load supported by sheet pile walls. This information gap necessitates a comprehensive study to assess potential impacts on adjacent structures and propose suitable mitigation measures. The research underscores the intricate dynamics between sheet pile wall construction and its influence on the local environment. It emphasizes the critical importance of proactive engineering and vigilant monitoring in managing and mitigating potential hazards to nearby buildings. To mitigate these risks, the paper recommends measures such as deep foundations, ground improvement techniques, and retrofitting. The findings presented in this study contribute significantly to the field of civil engineering and offer invaluable insights into the multifaceted dynamics of construction-induced settlement. The study underscores the importance of continuous evaluation and coordination between construction teams and building owners to effectively manage the impacts of sheet pile wall construction on adjacent structures.展开更多
A bold innovation was carried out for the structural type of wharves in line with local conditions in Chiwan Port, in which a group of wharves with novel structures have been built in this port during the past ten years.
The uplift resistance calculation is an important basis for the construction decisions of the jack-up wind installation vessel and the design of the jacking system,and determines the operation risk and reliability in ...The uplift resistance calculation is an important basis for the construction decisions of the jack-up wind installation vessel and the design of the jacking system,and determines the operation risk and reliability in the installation process of the wind turbine. The influence factors of the pile shoe's penetration depth and uplift resistance are analyzed,and the calculation model and flow of the uplift resistance are given. Based on a construction example,the influence rules are analyzed for the change of the pile shoe's structural parameters on the penetration depth and uplift resistance.The analysis results show that the penetration depth is more sensitive to the width of the pile shoe,and the height has greater influence on the uplift resistance than the length and width of the spud. With the increase of the height,the uplift resistance may increase rapidly.Although the decreases of the length,width and height of the pile shoe may reduce the uplift resistance,the penetration depth may increase in the meantime. This will increase the pulling pile time and reduce the construction efficiency. So the parameters of the pile shoe should be optimized according to the adaptable geology condition so as to obtain the optimal uplift resistance and working efficiency.展开更多
文摘This paper delves into the critical aspects of sheet pile walls in civil engineering, highlighting their versatility in soil protection, retention, and waterproofing, all while emphasizing sustainability and efficient construction practices. The paper explores two fundamental approaches to sheet pile design: limit equilibrium methods and numerical techniques, with a particular focus on finite element analysis. Utilizing the robust PLAXIS 2016 calculation code based on the finite element method and employing a simplified elastoplastic model (Mohr-Coulomb), this study meticulously models the interaction between sheet pile walls and surrounding soil. The research offers valuable insights into settlement and deformation patterns that adjacent buildings may experience during various construction phases. The central objective of this paper is to present the study’s findings and recommend potential mitigation measures for settlement effects on nearby structures. By unraveling the intricate interplay between sheet pile wall construction and neighboring buildings, the paper equips engineers and practitioners to make informed decisions that ensure the safety and integrity of the built environment. In the context of the Cotonou East Corniche development, the study addresses the limitations of existing software, such as RIDO, in predicting settlements and deformations affecting nearby buildings due to the substantial load supported by sheet pile walls. This information gap necessitates a comprehensive study to assess potential impacts on adjacent structures and propose suitable mitigation measures. The research underscores the intricate dynamics between sheet pile wall construction and its influence on the local environment. It emphasizes the critical importance of proactive engineering and vigilant monitoring in managing and mitigating potential hazards to nearby buildings. To mitigate these risks, the paper recommends measures such as deep foundations, ground improvement techniques, and retrofitting. The findings presented in this study contribute significantly to the field of civil engineering and offer invaluable insights into the multifaceted dynamics of construction-induced settlement. The study underscores the importance of continuous evaluation and coordination between construction teams and building owners to effectively manage the impacts of sheet pile wall construction on adjacent structures.
文摘A bold innovation was carried out for the structural type of wharves in line with local conditions in Chiwan Port, in which a group of wharves with novel structures have been built in this port during the past ten years.
基金Department of Transportation Technology of Construction Project,China(No.2013328225080)Natural Science Foundation of Liaoning Province,China(No.2015020121)the Fundamental Research Funds for the Central Universities,China(Nos.3132015087,3132014303)
文摘The uplift resistance calculation is an important basis for the construction decisions of the jack-up wind installation vessel and the design of the jacking system,and determines the operation risk and reliability in the installation process of the wind turbine. The influence factors of the pile shoe's penetration depth and uplift resistance are analyzed,and the calculation model and flow of the uplift resistance are given. Based on a construction example,the influence rules are analyzed for the change of the pile shoe's structural parameters on the penetration depth and uplift resistance.The analysis results show that the penetration depth is more sensitive to the width of the pile shoe,and the height has greater influence on the uplift resistance than the length and width of the spud. With the increase of the height,the uplift resistance may increase rapidly.Although the decreases of the length,width and height of the pile shoe may reduce the uplift resistance,the penetration depth may increase in the meantime. This will increase the pulling pile time and reduce the construction efficiency. So the parameters of the pile shoe should be optimized according to the adaptable geology condition so as to obtain the optimal uplift resistance and working efficiency.