Recently, canopy transpiration (Ec) has been often estimated by xylem sap-flow measurements. However, there is a significant time lag between sap flow measured at the base of the stem and canopy transpiration due to...Recently, canopy transpiration (Ec) has been often estimated by xylem sap-flow measurements. However, there is a significant time lag between sap flow measured at the base of the stem and canopy transpiration due to the capacitive exchange between the transpiration stream and stem water storage. Significant errors will be introduced in canopy conductance (gc) and canopy transpiration estimation if the time lag is neglected. In this study, a cross-correlation analysis was used to quantify the time lag, and the sap flowbased transpiration was measured to pararneterize Jarvistype models of gc and thus to simulate Ec of Populus cathayana using the Penman-Monteith equation. The results indicate that solar radiation (Rs) and vapor pressure deficit (VPD) are not fully coincident with sap flow and have an obvious lag effect; the sap flow lags behind Rs and precedes VPD, and there is a 1-h time shift between Eo and sap flow in the 30-min interval data set. A parameterized Jarvis-type gc model is suitable to predict P. cathayana transpiration and explains more than 80% of the variation observed in go, and the relative error was less than 25%, which shows a preferable simulation effect. The root mean square error (RMSEs) between the predicted and measured Ec were 1.91×10^-3 (with the time lag) and 3.12×10^-3cm h^-1 (without the time lag). More importantly, Ec simulation precision that incorporates time lag is improved by 6% compared to the results without the time lag, with the mean relative error (MRE) of only 8.32% and the mean absolute error (MAE) of 1.48 × 10^-3 cm h^-1.展开更多
In the present study, an experimental study was conducted to characterize the effect of Reynolds number on flow structures in the turbulent wake of a circular parachute canopy by utilizing stereoscopic particle image ...In the present study, an experimental study was conducted to characterize the effect of Reynolds number on flow structures in the turbulent wake of a circular parachute canopy by utilizing stereoscopic particle image velocime- try (Stereo-PIV) technique. The parachute model tested in the present study was attached by 28 nylon suspension lines and placed horizontally at the test section center of the wind tunnel. The obtained results showed that with the in- crease of Reynolds number, the intensities of the vortices near the downstream region of the canopy skirt were found to increase accordingly. However, the increase of Reynolds number did not result in a significant change in ensemble- averaged normalized x-component of the velocity, ensembleaveraged normalized vorticity, normalized Reynolds stress, and normalized turbulent kinetic energy distributions in the turbulent wake of the circular parachute canopy. The obtained results are very useful to further our understanding about the unsteady aerodynamics in the wake of flexible circular parachute canopies and to constitute a reference for CFD computation.展开更多
The amount of photosynthetic radiation inter- cepted by a crop is a function of the incident solar radiation on the plants, the leaf area index (LAI), and the light extinction coefficient (k). We quantified LAI an...The amount of photosynthetic radiation inter- cepted by a crop is a function of the incident solar radiation on the plants, the leaf area index (LAI), and the light extinction coefficient (k). We quantified LAI and k in stands of black wattle (Acacia mearnsii De Wild.) over a 7-year growth cycle at two locations in the state of Rio Grande do Sul, Brazil. Our study was conducted in commercial stands in agroecological regions with high densities of black wattle plantations. LAI was calculated as the ratio between the leaf area of a tree and its planting space, and k was derived from Beer's law. LAI depends on the planting site and stand age. Between the two sites, the LAI was similar over time, the amount of variation differed. Values of k depended only on stand age, with the highest average observed for stands up to 5 years old. The trend of k during the plantation cycle was inversely proportional to LAI and was correlated with LAI, leaf area, leaf dry mass, canopy volume, height, branches dry mass, total dry mass, and crown diameter.展开更多
基金supported by the Qinghai province natural science foundation project(2015-ZJ-902)the Qinghai province science and technology plan program(2014-NK-A4-4)
文摘Recently, canopy transpiration (Ec) has been often estimated by xylem sap-flow measurements. However, there is a significant time lag between sap flow measured at the base of the stem and canopy transpiration due to the capacitive exchange between the transpiration stream and stem water storage. Significant errors will be introduced in canopy conductance (gc) and canopy transpiration estimation if the time lag is neglected. In this study, a cross-correlation analysis was used to quantify the time lag, and the sap flowbased transpiration was measured to pararneterize Jarvistype models of gc and thus to simulate Ec of Populus cathayana using the Penman-Monteith equation. The results indicate that solar radiation (Rs) and vapor pressure deficit (VPD) are not fully coincident with sap flow and have an obvious lag effect; the sap flow lags behind Rs and precedes VPD, and there is a 1-h time shift between Eo and sap flow in the 30-min interval data set. A parameterized Jarvis-type gc model is suitable to predict P. cathayana transpiration and explains more than 80% of the variation observed in go, and the relative error was less than 25%, which shows a preferable simulation effect. The root mean square error (RMSEs) between the predicted and measured Ec were 1.91×10^-3 (with the time lag) and 3.12×10^-3cm h^-1 (without the time lag). More importantly, Ec simulation precision that incorporates time lag is improved by 6% compared to the results without the time lag, with the mean relative error (MRE) of only 8.32% and the mean absolute error (MAE) of 1.48 × 10^-3 cm h^-1.
基金supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,the Ministry of Education
文摘In the present study, an experimental study was conducted to characterize the effect of Reynolds number on flow structures in the turbulent wake of a circular parachute canopy by utilizing stereoscopic particle image velocime- try (Stereo-PIV) technique. The parachute model tested in the present study was attached by 28 nylon suspension lines and placed horizontally at the test section center of the wind tunnel. The obtained results showed that with the in- crease of Reynolds number, the intensities of the vortices near the downstream region of the canopy skirt were found to increase accordingly. However, the increase of Reynolds number did not result in a significant change in ensemble- averaged normalized x-component of the velocity, ensembleaveraged normalized vorticity, normalized Reynolds stress, and normalized turbulent kinetic energy distributions in the turbulent wake of the circular parachute canopy. The obtained results are very useful to further our understanding about the unsteady aerodynamics in the wake of flexible circular parachute canopies and to constitute a reference for CFD computation.
文摘The amount of photosynthetic radiation inter- cepted by a crop is a function of the incident solar radiation on the plants, the leaf area index (LAI), and the light extinction coefficient (k). We quantified LAI and k in stands of black wattle (Acacia mearnsii De Wild.) over a 7-year growth cycle at two locations in the state of Rio Grande do Sul, Brazil. Our study was conducted in commercial stands in agroecological regions with high densities of black wattle plantations. LAI was calculated as the ratio between the leaf area of a tree and its planting space, and k was derived from Beer's law. LAI depends on the planting site and stand age. Between the two sites, the LAI was similar over time, the amount of variation differed. Values of k depended only on stand age, with the highest average observed for stands up to 5 years old. The trend of k during the plantation cycle was inversely proportional to LAI and was correlated with LAI, leaf area, leaf dry mass, canopy volume, height, branches dry mass, total dry mass, and crown diameter.