Epilepsy is a common and serious neurological disease that causes recurrent seizures. The brain damage caused by seizures can lead to depression, anxiety, cognitive impairment, or disability. In almost all cases chron...Epilepsy is a common and serious neurological disease that causes recurrent seizures. The brain damage caused by seizures can lead to depression, anxiety, cognitive impairment, or disability. In almost all cases chronic seizures are difficult to cure. MicroRNAs are widely expressed in the central nervous system and play important roles in the pathogenesis of several neurological disorders, including epilepsy. A variety of animals(mostly mice and rats) have been used to induce experimental epilepsy using different protocols and miRNA profiling performed. Most of the recent studies reviewed had performed miRNA profiling in hippocampal tissues and a large number of microRNAs were dysregulated when compared to controls. Most notably, miR-132-3p,-146a-5p,-10a-5p,-21a-3p,-27a-3p,-142a-5p,-212-3p,-431-5p, and-155 were upregulated in both the mouse and rat studies. Overexpression of miR-137 and miR-219 decreased seizure severity in a mouse epileptic model, and suppression of miR-451,-10a-5p,-21a-5p,-27a-5p,-142a-5p,-431-5p,-155, and-134 had a positive influence on seizure behavior. In the rat studies, overexpression of miR-139-5p decreased neuronal damage in drug-resistant rats and inhibition of miR-129-2-3p,-27a-3p,-155,-134,-181a, and-146a had a positive effect on seizure behavior and/or reduced the loss of neuronal cells. Further studies are warranted using adult female and immature male and female animals. It would also be helpful to test the ability of specific agomirs and antagomirs to control seizure activity in a subhuman primate model of epilepsy such as adult marmosets injected intraperitoneally with pilocarpine or cynomolgus monkeys given intrahippocampal injections of kainic acid.展开更多
Objective:To screen risk factors for epilepsy after acute ischaemic stroke based on meta-analysis and cohort study and to establish a predictive model.Methods:Computer searches of MEDLINE,Embase,Cochrane library,Web o...Objective:To screen risk factors for epilepsy after acute ischaemic stroke based on meta-analysis and cohort study and to establish a predictive model.Methods:Computer searches of MEDLINE,Embase,Cochrane library,Web of Scinence,PubMed,CNKI,and WanFang Data data were conducted to collect literature on epilepsy after in acute ischemic stroke,from database creation to September 1,2022.The RRs and their 95%confidence intervals(CI)for risk factors for post stroke epilepsy were extracted for each study,and pooled estimates of the RRs and 95%CIs for each study were generated using either a random-effects model or a fixed-effects model.Beta coefficients for each risk factor were calculated based on the combined RR and their corresponding 95%CIs.The beta coefficients were multiplied by 10 and rounded.Results:Ten articles were identified for final inclusion in this meta-analysis,with a total of 141948 cases and 3702 cases of post stroke epilepsy.The risk factors included in the final risk prediction model were infarct size(RR 4.67,95%CI 1.41~15.47;P=0.01),stroke recuRRence(RR 2.48,95%CI 2.01~3.05;P<0.00001),stroke etiology(RR 1.70,95%CI 1.34~2.15;P<0.00001),stroke severity(RR 1.70,95%CI 1.34~2.15;P<0.00001),and stroke risk.stroke severity(RR 1.53,95%CI 1.39~1.70;P<0.00001),NIHSS score(RR 2.91,95%CI 1.64~5.61;P=0.0003),early-onset epilepsy(RR 5.62,95%CI 5.08~6.22;P<0.00001),cortical lesions(RR 3.83.95%CI 2.23~6.58;P<0.00001),total anterior circulation infarction(RR 18.94,95%CI 10.38~34.57;P<0.00001),partial anterior circulation infarction(RR 4.39,95%CI 2.29~8.40;P<0.00001),cardiovascular events(RR 1.78,95%CI 1.59~1.99;P<0.00001).Conclusion:Based on a systematic review and meta-analysis,we developed a simple risk prediction model for late epilepsy in baseline ischemic stroke that integrates clinical risk factors,including infarct size,stroke recurrence,stroke etiology,stroke severity,NIHSS score,early onset epilepsy,cortical lesions,stroke subtype,and cardiovascular events.展开更多
Background:Pentylenetetrazole kindling has long been used for the screening of investigational antiseizure drugs.The presence of lamotrigine,at a very low dose,does not hamper kindling in mice;rather it modifies this ...Background:Pentylenetetrazole kindling has long been used for the screening of investigational antiseizure drugs.The presence of lamotrigine,at a very low dose,does not hamper kindling in mice;rather it modifies this epileptogenesis process into drug-resistant epilepsy.The lamotrigine-pentylenetetrazole kindled mice show resistance to lamotrigine,phenytoin,and carbamazepine.It may also be possible that other licensed antiseizure drugs,like the mentioned drugs,remain ineffective in this model;therefore,this was the subject of this study.Methods:Swiss albino mice were kindled with pentylenetetrazole for 35 days in the presence of either methylcellulose vehicle or lamotrigine(subtherapeutic dose,ie,5 mg/kg).Vehicle vs lamotrigine-kindled mice were compared in terms of(a)resistance/response toward nine antiseizure drugs applied as monotherapies and two drug combinations;(b)lamotrigine bioavailability in blood and brain;(c)blood-brain barrier integrity;and(d)amino acids and monoamines in the cerebral cortex and hippocampus.Results:Lamotrigine vs vehicle-kindled mice are similar(or not significantly different P>.05 from each other)in terms of(a)response toward drug combinations;(b)lamotrigine bioavailability;and(c)blood-brain barrier integrity except for,significantly(P<.05)reduced taurine and increased glutamate in the cerebral cortex and hippocampus.Aside from these,lamotrigine-kindled mice show significant(P<.05)resistant to lamotrigine(15 mg/kg),levetiracetam(40 mg/kg);carbamazepine(40 mg/kg),zonisamide(100 mg/kg),gabapentin(224 mg/kg),pregabalin(30 mg/kg),phenytoin(35 mg/kg),and topiramate(300 mg/kg).Conclusion:Lamotrigine-pentylenetetrazole kindling takes longer to develop(~5 weeks)in comparison to lamotrigine-amygdale(~4 weeks)and lamotriginecorneal(~2 weeks)kindling models.However,drug screening through this model may yield superior drugs with novel antiseizure mechanisms.展开更多
BACKGROUND: Oxidative stress plays an important role in the pathophysiology of epilepsy. Glutathione, known as one of the compounds of antioxidant defense, has been shown to inhibit convulsions. Nitric oxide has a pr...BACKGROUND: Oxidative stress plays an important role in the pathophysiology of epilepsy. Glutathione, known as one of the compounds of antioxidant defense, has been shown to inhibit convulsions. Nitric oxide has a proconvulsant effect on a pentylenetetrazole-induced animal model. OBJECTIVE: To evaluate the effects of glutathione administration on nitric oxide levels in brain regions of convulsive and kindling pentylenetetrazole-induced seizure models. DESIGN, TIME, AND SETTING: A randomized, controlled, animal experiment. The study was performed at the Department of Physiology, Gaziantep University and Department of Chemistry-Biochemistry,Kahramamaras Sutcu Imam University in 2006. MATERIALS: Pentylenetetrazole and glutathione were purchased from Sigma, USA. METHODS: A total of 80 mice were assigned to 8 groups (n = 10): normal control, saline control (1 mL normal saline), convulsive pentylenetetrazole (single intraperitoneal administration of pentylenetetrazole, 60 mg/kg), convulsive pentylenetrazole plus glutathione (single administration of 60 mg/kg pentylenetetrazole and 200 mg/kg glutathione), five-dose glutathione (intraperitoneal injection of 200 mg/kg glutathione respectively at 1, 3, 5, 7, and 10 days), single-dose glutathione (single administration of 200 mg/kg glutathione), pentylenetetrazole kindling (intraperitoneal administration of pentylenetetrazole of 40 mg/kg at 1,3, 5, 7, and 10 days), and pentylenetetrazole kindling plus glutathione group (intraperitoneal injection of 40 mg/kg pentylenetetrazole and 200 mg/kg glutathione respectively at 1, 3, 5, 7, and 10 days). MAIN OUTCOME MEASURES: All mice were sacrificed 1 hour after the last administration. Brain nitric oxide levels were determined by spectrophotometry. RESULTS: There were no significant differences in nitric oxide levels between the normal control, saline control, five-dose glutathione, and single-dose glutathione groups (P 〉 0.05). Nitric oxide levels in the cerebral hemisphere and cerebellum were significantly less in the convulsive pentylenetetrazole group, compared with the convulsive pentylenetetrazole plus glutathione group (P 〈 0.01), and levels in the pentylenetetrazole kindling group were remarkably greater than the remaining groups (P 〈 0.01 ). Brain nitric oxide levels in all groups gradually decreased from the right brain stem to the left brain stem, cerebellum, left cerebral hemisphere, and right cerebral hemisphere. CONCLUSION: Glutathione regulated nitric oxide levels in various brain regions of pentylenetetrazole-induced kindling models, and did not affect nitric oxide levels in the control mice. These results indicated that glutathione played a role when nitric oxide was over-produced. In addition, the brain stem exhibited the highest levels of nitric oxide in both control mice and pentylenetetrazole-induced kindling models.展开更多
Electrical Source Imaging (ESI) is a non-invasive technique of reconstructing brain activities using EEG data. This technique has been applied to evaluate epilepsy patients being evaluated for epilepsy surgery, showin...Electrical Source Imaging (ESI) is a non-invasive technique of reconstructing brain activities using EEG data. This technique has been applied to evaluate epilepsy patients being evaluated for epilepsy surgery, showing encouraging results for mapping interictal epileptiform discharges (IED). However, ESI is underused in planning epilepsy surgery. This is basically due to the wide availability of methods for solving the electromagnetism inverse problem (e-IP) associated to few studies using EEG setups similar to those most commonly used in clinical setting. In this study, we applied six different methods of solving the e-IP based on IEDs of 20 focal epilepsy patients that presented abnormalities in their MRI. We compared the ESI maps obtained by each method with the location of the abnormality, calculating the Euclidian distances from the center of the lesion to the closest border of the method solution (CL-BM) and also to the solution’s maxima (CL-MM). We also applied a score system in order to allow us to evaluate the sensitivity of each method for temporal and extra temporal patients. In our patients, the Bayesian Model Averaging method had a sensitivity of 86% and the shortest CL-MM. This method also had more restricted solutions that were more representative of epileptogenic activities than those obtained by the other methods.展开更多
BACKGROUND: In order to study the pathogenesis of iron-induced posttraumatic epilepsy (PTE), foreign scholars have established several kinds of PTE animal models, among which, the iron- induced PTE animal models pr...BACKGROUND: In order to study the pathogenesis of iron-induced posttraumatic epilepsy (PTE), foreign scholars have established several kinds of PTE animal models, among which, the iron- induced PTE animal models proposed by Willmore is the most famous. The iron-induced PTE animal models can be established by two methods: one is cortical ferric chloride injection (CFCI) and the other one is pial iontophoresis of ferric chloride (PIFC). Because Willmore did not give out the elaboration of the behaviors and electroencephalograms (EEGs) of the iron induced PTE animal models established by these two methods, so we have known little about these animal models. OBJECTIVE: To observe the behaviors and EEGs of the iron-induced PTE animal models established by PIFC and CFCI, in order to compare the differences and the study value of these two methods. DESIGN: Qualitative controlled observation tria SETTING: Department of Neurosurgery, Urumqi General Hospital, Lanzhou Military Area Command of Chinese PLA. MATERIALS: Forty healthy adult male SD rats, weighing 200 to 250 g, were involved in this experiment. Reagents and instruments: Ferric chloride (FeCl3·6H2O, Sigma USA), rat stereotaxic apparatus (ASI company, USA), the wireless blue tooth electroencephlograms recording system (Nuocheng electric Co.Ltd, Shanghai), a set of air turbine dental drill unit, dental base acrylic resin powder, microinjector (50 μL), amperemeter (1 mA), a pair of batteries, electric resistance (200 kΩ) , variable resistance (100 kΩ), tubule with endo-meridians of 2 mm (used as import tube), several silver wire segments and several acupuncture needles were employed in this study. METHODS: This study was carried out in the Experimental Animal Center of the Urumqi General Hospital, Lanzhou Military Area Command of Chinese PLA between November 2004 and April 2005. Establishing the PET animal models by CFCI method: Twenty SD rats were taken, intraperitoneally anesthetized with 50 mg/kg barbanylum and fixed on stereotaxic apparatus. A cranial burr hole with the diameter of 2 mm was drilled 3 mm behind the coronal suture and 2 mm lateral to the sagittal line on the left cranium. Another 5 cranial burr holes with diameter of 2 mm were drilled to place electrodes. The positions of holes were set that taking bregma as original point, sagittal line as Y-axis, the line through the original point and vertical to the Y-axis as X-axis. The unit of the coordinate axis was mm. The coordinate value of the electrodes were (4, 0), (4, -6), (-4, 0), (-4, -6), at last, a hole with the diameter of 2 mm was drilled on the center of the coronale. 5 μL ferric chloride solution (FeCl3, 100 mmol/L, pH 1.5) was injected into the sensorimotor cortex of rats using microinjector within 5 minutes. The needling depth was 3 mm. The needle was retained for 5 minutes so as to prevent the outflow of liquid. Establishing the PTE animal models by PIFC method: Twenty SD rats were chosen and weighed, and the procedures after weighing were as above.A cranial burr hole with the diameter of 4 mm was drilled in the position where needle inserted in animal models established by CFCI method. Cerebral dura mater was cut. Another 5 holes were drilled to place electrodes in the same position as above. The tip of tubule cotton stuffed inside (to prevent the rapid flow of FeCl3 solution, 100 mmol/L, pH 1.5) was gently connected to cerebral pia mater. The positive and negative electrodes of the amperemeter whose output current was 100 μA were connected to acupuncture needles. The acupuncture needle, which was connected to positive electrode, was inserted into ferric chloride solution, and that which was connected to negative electrode was inserted into the right forelimb of rats subcutaneously. The rats were galvanized for 10 minutes. Record of EEG: The silver wire with blunt anterior extremity was placed on the cerebral dura mater. Then, silver wire and cranial bones were firmly fixed with dental base acrylic resin power. The other side was connected to the wireless blue tooth electroencephlograms recording system to monitor EEG changes. Assessment criteria of seizure degree: Grade Ⅰ : "wet dog-like" shudder, facial muscle convulsion and chewing;Grade Ⅱ: rhythmical nodding:Grade Ⅲ: forelimb clonus:Grade Ⅳ: forelimb clonus while standing: Grade Ⅴ: lost the balance, vert, limb's convulsion and the whole body's tic. MAIN OUTCOME MEASURES: Behaviors and EEGs changes of iron-induced PTE animal models established by PTFC and CFCI. RESULTS: All the 40 rats were involved in the result analysis. (1) The changes of the behaviors: The two animal models both had the epileptic seizures. The epileptic seizure of the animal model established by PIFC mainly presented automatic behavior of chewing, and facial muscle convulsion accompanied with chewing. Epileptic seizure reached the peak within 2.5 to 7 hours after model establishing.It was gradually decreased within 24 hours and hardly seen 1 day after model establishing. The epileptic seizure of the rat model established by CFCI mainly presented turnover upspring and limbs' convulsion and urinary incontinence accompanied. The epileptic seizure reached the peak within 3 to 8 hours.It was relatively frequent within 1 week and gradually decreased within 2 weeks after model establishing. The PTE animal models established by CFCI were more closed to clinical PTE process. (2) The form of seizures: The epileptic seizures of the rat model established by PIFC mainly presented grade Ⅰ , seldom presented grades Ⅲ, Ⅳ and Ⅴ; The epileptic seizures of rat model established by CFCI mainly presented the head turning to the right, body's rotation, then appeared as grades Ⅳ and Ⅴ, and the whole procedure lasted 1 minute. At the interval of big seizures, grade Ⅰ was observed. From the respect of seizure manifestation, the PTE models established by CFCI were more similar to human PTE. (3) EEGs changes: The sharp waves with average frequency of 9.66 Hz and average amplitude of 183.90 μV were observed on the EEGs of the model established by PIFC when the rats were suffering seizures. The spike waves with average frequency of 16.01 Hz and average amplitude of 143.60 μV were observed on the EEGs of the model established by CFCI when the rats were suffering seizures. CONCLUSTON: (1)Iron-induced PTE rat model is stable and credible. (2)Compared with PTE animal model established by PIFC, PTE animal model established by CFCI is a chronic animal model, and its seizure manifestation is more similar to human PTE. so it is worth further studies.展开更多
BACKGROUND: Electrical stimulation kindling model, having epilepsy-inducing and spontaneous seizure and other advantages, is a very ideal experimental animal model. But the kindling effect might be different at diffe...BACKGROUND: Electrical stimulation kindling model, having epilepsy-inducing and spontaneous seizure and other advantages, is a very ideal experimental animal model. But the kindling effect might be different at different sites. OBJECTIVE: To compare the features of animal models of complex partial epilepsy established through unilateral, bilateral and alternate-side kindling at hippocampus and successful rate of modeling among these 3 different ways. DESIGN: A randomized and controlled animal experiment SETTING: Department of Neurology, Qilu Hospital, Shandong University MATERIALS: Totally 60 healthy adult Wistar rats, weighing 200 to 300 g, of either gender, were used in this experiment. BL-410 biological functional experimental system (Taimeng Science and Technology Co. Ltd, Chengdu) and SE-7102 type electronic stimulator (Guangdian Company, Japan) were used in the experiment. METHODS: This experiment was carried out in the Experimental Animal Center of Shandong University from April to June 2004. After rats were anesthetized, electrode was implanted into the hippocampus. From the first day of measurement of afterdischarge threshold value, rats were given two-square-wave suprathreshold stimulation once per day with 400 μA intensity, 1ms wave length, 60 Hz frequency for 1 s duration. Left hippocampus was stimulated in unilateral kindling group, bilateral hippocampi were stimulated in bilateral kindling group, and left and right hippocampi were stimulated alternately every day in the alternate-side kindling group. Seizure intensity was scored: grade 0: normal, 1: wet dog-like shivering, facial spasm, such as, winking, touching the beard, rhythmic chewing and so on; 2: rhythmic nodding; 3: forelimb spasm;4: standing accompanied by bilateral forelimb spasm;5: tumbling, losing balance, four limbs spasm. Modeling was successful when seizure intensity reached grade 5. t test was used for the comparison of mean value between two samples. MAIN OUTCOME MEASURES: Comparison of the successful rate of modeling, the times of stimulation to reach intensity of grade 5, the lasting time of seizure of grade 3 of rats in each group. RESULTS: Four rats of alternate-side kindling group dropped out due to infection-induced electrode loss, and 56 rats were involved in the result analysis. The successful rate of unilateral kindling group, bilateral kin- dling group and alternate-side kindling group was 55%(11/20),100%(16/16)and 100%(20/20), respective- ly. The stimuli to reach the grade 5 spasm were significantly more in the bilateral kindling group than in the unilateral kindling group [(30.63±3.48), (19.36±3.47)times, t=8.268, P 〈 0.01], and those were significantly fewer in the alternate-side kindling group than in the unilateral kindling group [( 10.85±1.98)times, t=-8.744, P 〈 0.01]. The duration of grade 3 spasm was significantly longer in the bilateral kindling group than in the unilateral kindling group [(9.75±2.59), (3.21 ±1.58)days,t=-8.183,P 〈 0.01], Among 20 successful rats of al- ternate-side kindling group, grade 5 spasm was found in the left hippocampi of 11 rats, but grade 3 spasm in their right hippocampi; Grade 5 spasm was found in the right hippocampi of the other 9 rats, grade 4 spasm in the left hippocampus of 1 rat and grade 3 of 8 rats. CONCLUSION : The speed of establishing epilepsy seizure model by alternate-side kindling is faster than that by unilateral kindling, while that by bilateral kindling is slower than that by unilateral kindling. The successful rate is very high to establish complex partial epilepsy with alternate-side or bilateral kindling. Epilepsy seizure established by alternate-side kindling has antagonistic effect of kindling and the seizure duration of grade 3 spasm is prolonged.展开更多
Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal d...Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.展开更多
文摘Epilepsy is a common and serious neurological disease that causes recurrent seizures. The brain damage caused by seizures can lead to depression, anxiety, cognitive impairment, or disability. In almost all cases chronic seizures are difficult to cure. MicroRNAs are widely expressed in the central nervous system and play important roles in the pathogenesis of several neurological disorders, including epilepsy. A variety of animals(mostly mice and rats) have been used to induce experimental epilepsy using different protocols and miRNA profiling performed. Most of the recent studies reviewed had performed miRNA profiling in hippocampal tissues and a large number of microRNAs were dysregulated when compared to controls. Most notably, miR-132-3p,-146a-5p,-10a-5p,-21a-3p,-27a-3p,-142a-5p,-212-3p,-431-5p, and-155 were upregulated in both the mouse and rat studies. Overexpression of miR-137 and miR-219 decreased seizure severity in a mouse epileptic model, and suppression of miR-451,-10a-5p,-21a-5p,-27a-5p,-142a-5p,-431-5p,-155, and-134 had a positive influence on seizure behavior. In the rat studies, overexpression of miR-139-5p decreased neuronal damage in drug-resistant rats and inhibition of miR-129-2-3p,-27a-3p,-155,-134,-181a, and-146a had a positive effect on seizure behavior and/or reduced the loss of neuronal cells. Further studies are warranted using adult female and immature male and female animals. It would also be helpful to test the ability of specific agomirs and antagomirs to control seizure activity in a subhuman primate model of epilepsy such as adult marmosets injected intraperitoneally with pilocarpine or cynomolgus monkeys given intrahippocampal injections of kainic acid.
基金This study was supported by Hainan Provincial Key Research and Development Plan(ZDYF2021SHFZ092,ZDYF2022SHFZ109),Hainan Provincial Natural Science Foundation(822RC832)Hainan Provincial Clinical Medical Center(2021)Epilepsy Research Innovation Team of Hainan Medical College(2022)。
文摘Objective:To screen risk factors for epilepsy after acute ischaemic stroke based on meta-analysis and cohort study and to establish a predictive model.Methods:Computer searches of MEDLINE,Embase,Cochrane library,Web of Scinence,PubMed,CNKI,and WanFang Data data were conducted to collect literature on epilepsy after in acute ischemic stroke,from database creation to September 1,2022.The RRs and their 95%confidence intervals(CI)for risk factors for post stroke epilepsy were extracted for each study,and pooled estimates of the RRs and 95%CIs for each study were generated using either a random-effects model or a fixed-effects model.Beta coefficients for each risk factor were calculated based on the combined RR and their corresponding 95%CIs.The beta coefficients were multiplied by 10 and rounded.Results:Ten articles were identified for final inclusion in this meta-analysis,with a total of 141948 cases and 3702 cases of post stroke epilepsy.The risk factors included in the final risk prediction model were infarct size(RR 4.67,95%CI 1.41~15.47;P=0.01),stroke recuRRence(RR 2.48,95%CI 2.01~3.05;P<0.00001),stroke etiology(RR 1.70,95%CI 1.34~2.15;P<0.00001),stroke severity(RR 1.70,95%CI 1.34~2.15;P<0.00001),and stroke risk.stroke severity(RR 1.53,95%CI 1.39~1.70;P<0.00001),NIHSS score(RR 2.91,95%CI 1.64~5.61;P=0.0003),early-onset epilepsy(RR 5.62,95%CI 5.08~6.22;P<0.00001),cortical lesions(RR 3.83.95%CI 2.23~6.58;P<0.00001),total anterior circulation infarction(RR 18.94,95%CI 10.38~34.57;P<0.00001),partial anterior circulation infarction(RR 4.39,95%CI 2.29~8.40;P<0.00001),cardiovascular events(RR 1.78,95%CI 1.59~1.99;P<0.00001).Conclusion:Based on a systematic review and meta-analysis,we developed a simple risk prediction model for late epilepsy in baseline ischemic stroke that integrates clinical risk factors,including infarct size,stroke recurrence,stroke etiology,stroke severity,NIHSS score,early onset epilepsy,cortical lesions,stroke subtype,and cardiovascular events.
文摘Background:Pentylenetetrazole kindling has long been used for the screening of investigational antiseizure drugs.The presence of lamotrigine,at a very low dose,does not hamper kindling in mice;rather it modifies this epileptogenesis process into drug-resistant epilepsy.The lamotrigine-pentylenetetrazole kindled mice show resistance to lamotrigine,phenytoin,and carbamazepine.It may also be possible that other licensed antiseizure drugs,like the mentioned drugs,remain ineffective in this model;therefore,this was the subject of this study.Methods:Swiss albino mice were kindled with pentylenetetrazole for 35 days in the presence of either methylcellulose vehicle or lamotrigine(subtherapeutic dose,ie,5 mg/kg).Vehicle vs lamotrigine-kindled mice were compared in terms of(a)resistance/response toward nine antiseizure drugs applied as monotherapies and two drug combinations;(b)lamotrigine bioavailability in blood and brain;(c)blood-brain barrier integrity;and(d)amino acids and monoamines in the cerebral cortex and hippocampus.Results:Lamotrigine vs vehicle-kindled mice are similar(or not significantly different P>.05 from each other)in terms of(a)response toward drug combinations;(b)lamotrigine bioavailability;and(c)blood-brain barrier integrity except for,significantly(P<.05)reduced taurine and increased glutamate in the cerebral cortex and hippocampus.Aside from these,lamotrigine-kindled mice show significant(P<.05)resistant to lamotrigine(15 mg/kg),levetiracetam(40 mg/kg);carbamazepine(40 mg/kg),zonisamide(100 mg/kg),gabapentin(224 mg/kg),pregabalin(30 mg/kg),phenytoin(35 mg/kg),and topiramate(300 mg/kg).Conclusion:Lamotrigine-pentylenetetrazole kindling takes longer to develop(~5 weeks)in comparison to lamotrigine-amygdale(~4 weeks)and lamotriginecorneal(~2 weeks)kindling models.However,drug screening through this model may yield superior drugs with novel antiseizure mechanisms.
文摘BACKGROUND: Oxidative stress plays an important role in the pathophysiology of epilepsy. Glutathione, known as one of the compounds of antioxidant defense, has been shown to inhibit convulsions. Nitric oxide has a proconvulsant effect on a pentylenetetrazole-induced animal model. OBJECTIVE: To evaluate the effects of glutathione administration on nitric oxide levels in brain regions of convulsive and kindling pentylenetetrazole-induced seizure models. DESIGN, TIME, AND SETTING: A randomized, controlled, animal experiment. The study was performed at the Department of Physiology, Gaziantep University and Department of Chemistry-Biochemistry,Kahramamaras Sutcu Imam University in 2006. MATERIALS: Pentylenetetrazole and glutathione were purchased from Sigma, USA. METHODS: A total of 80 mice were assigned to 8 groups (n = 10): normal control, saline control (1 mL normal saline), convulsive pentylenetetrazole (single intraperitoneal administration of pentylenetetrazole, 60 mg/kg), convulsive pentylenetrazole plus glutathione (single administration of 60 mg/kg pentylenetetrazole and 200 mg/kg glutathione), five-dose glutathione (intraperitoneal injection of 200 mg/kg glutathione respectively at 1, 3, 5, 7, and 10 days), single-dose glutathione (single administration of 200 mg/kg glutathione), pentylenetetrazole kindling (intraperitoneal administration of pentylenetetrazole of 40 mg/kg at 1,3, 5, 7, and 10 days), and pentylenetetrazole kindling plus glutathione group (intraperitoneal injection of 40 mg/kg pentylenetetrazole and 200 mg/kg glutathione respectively at 1, 3, 5, 7, and 10 days). MAIN OUTCOME MEASURES: All mice were sacrificed 1 hour after the last administration. Brain nitric oxide levels were determined by spectrophotometry. RESULTS: There were no significant differences in nitric oxide levels between the normal control, saline control, five-dose glutathione, and single-dose glutathione groups (P 〉 0.05). Nitric oxide levels in the cerebral hemisphere and cerebellum were significantly less in the convulsive pentylenetetrazole group, compared with the convulsive pentylenetetrazole plus glutathione group (P 〈 0.01), and levels in the pentylenetetrazole kindling group were remarkably greater than the remaining groups (P 〈 0.01 ). Brain nitric oxide levels in all groups gradually decreased from the right brain stem to the left brain stem, cerebellum, left cerebral hemisphere, and right cerebral hemisphere. CONCLUSION: Glutathione regulated nitric oxide levels in various brain regions of pentylenetetrazole-induced kindling models, and did not affect nitric oxide levels in the control mice. These results indicated that glutathione played a role when nitric oxide was over-produced. In addition, the brain stem exhibited the highest levels of nitric oxide in both control mice and pentylenetetrazole-induced kindling models.
文摘Electrical Source Imaging (ESI) is a non-invasive technique of reconstructing brain activities using EEG data. This technique has been applied to evaluate epilepsy patients being evaluated for epilepsy surgery, showing encouraging results for mapping interictal epileptiform discharges (IED). However, ESI is underused in planning epilepsy surgery. This is basically due to the wide availability of methods for solving the electromagnetism inverse problem (e-IP) associated to few studies using EEG setups similar to those most commonly used in clinical setting. In this study, we applied six different methods of solving the e-IP based on IEDs of 20 focal epilepsy patients that presented abnormalities in their MRI. We compared the ESI maps obtained by each method with the location of the abnormality, calculating the Euclidian distances from the center of the lesion to the closest border of the method solution (CL-BM) and also to the solution’s maxima (CL-MM). We also applied a score system in order to allow us to evaluate the sensitivity of each method for temporal and extra temporal patients. In our patients, the Bayesian Model Averaging method had a sensitivity of 86% and the shortest CL-MM. This method also had more restricted solutions that were more representative of epileptogenic activities than those obtained by the other methods.
文摘BACKGROUND: In order to study the pathogenesis of iron-induced posttraumatic epilepsy (PTE), foreign scholars have established several kinds of PTE animal models, among which, the iron- induced PTE animal models proposed by Willmore is the most famous. The iron-induced PTE animal models can be established by two methods: one is cortical ferric chloride injection (CFCI) and the other one is pial iontophoresis of ferric chloride (PIFC). Because Willmore did not give out the elaboration of the behaviors and electroencephalograms (EEGs) of the iron induced PTE animal models established by these two methods, so we have known little about these animal models. OBJECTIVE: To observe the behaviors and EEGs of the iron-induced PTE animal models established by PIFC and CFCI, in order to compare the differences and the study value of these two methods. DESIGN: Qualitative controlled observation tria SETTING: Department of Neurosurgery, Urumqi General Hospital, Lanzhou Military Area Command of Chinese PLA. MATERIALS: Forty healthy adult male SD rats, weighing 200 to 250 g, were involved in this experiment. Reagents and instruments: Ferric chloride (FeCl3·6H2O, Sigma USA), rat stereotaxic apparatus (ASI company, USA), the wireless blue tooth electroencephlograms recording system (Nuocheng electric Co.Ltd, Shanghai), a set of air turbine dental drill unit, dental base acrylic resin powder, microinjector (50 μL), amperemeter (1 mA), a pair of batteries, electric resistance (200 kΩ) , variable resistance (100 kΩ), tubule with endo-meridians of 2 mm (used as import tube), several silver wire segments and several acupuncture needles were employed in this study. METHODS: This study was carried out in the Experimental Animal Center of the Urumqi General Hospital, Lanzhou Military Area Command of Chinese PLA between November 2004 and April 2005. Establishing the PET animal models by CFCI method: Twenty SD rats were taken, intraperitoneally anesthetized with 50 mg/kg barbanylum and fixed on stereotaxic apparatus. A cranial burr hole with the diameter of 2 mm was drilled 3 mm behind the coronal suture and 2 mm lateral to the sagittal line on the left cranium. Another 5 cranial burr holes with diameter of 2 mm were drilled to place electrodes. The positions of holes were set that taking bregma as original point, sagittal line as Y-axis, the line through the original point and vertical to the Y-axis as X-axis. The unit of the coordinate axis was mm. The coordinate value of the electrodes were (4, 0), (4, -6), (-4, 0), (-4, -6), at last, a hole with the diameter of 2 mm was drilled on the center of the coronale. 5 μL ferric chloride solution (FeCl3, 100 mmol/L, pH 1.5) was injected into the sensorimotor cortex of rats using microinjector within 5 minutes. The needling depth was 3 mm. The needle was retained for 5 minutes so as to prevent the outflow of liquid. Establishing the PTE animal models by PIFC method: Twenty SD rats were chosen and weighed, and the procedures after weighing were as above.A cranial burr hole with the diameter of 4 mm was drilled in the position where needle inserted in animal models established by CFCI method. Cerebral dura mater was cut. Another 5 holes were drilled to place electrodes in the same position as above. The tip of tubule cotton stuffed inside (to prevent the rapid flow of FeCl3 solution, 100 mmol/L, pH 1.5) was gently connected to cerebral pia mater. The positive and negative electrodes of the amperemeter whose output current was 100 μA were connected to acupuncture needles. The acupuncture needle, which was connected to positive electrode, was inserted into ferric chloride solution, and that which was connected to negative electrode was inserted into the right forelimb of rats subcutaneously. The rats were galvanized for 10 minutes. Record of EEG: The silver wire with blunt anterior extremity was placed on the cerebral dura mater. Then, silver wire and cranial bones were firmly fixed with dental base acrylic resin power. The other side was connected to the wireless blue tooth electroencephlograms recording system to monitor EEG changes. Assessment criteria of seizure degree: Grade Ⅰ : "wet dog-like" shudder, facial muscle convulsion and chewing;Grade Ⅱ: rhythmical nodding:Grade Ⅲ: forelimb clonus:Grade Ⅳ: forelimb clonus while standing: Grade Ⅴ: lost the balance, vert, limb's convulsion and the whole body's tic. MAIN OUTCOME MEASURES: Behaviors and EEGs changes of iron-induced PTE animal models established by PTFC and CFCI. RESULTS: All the 40 rats were involved in the result analysis. (1) The changes of the behaviors: The two animal models both had the epileptic seizures. The epileptic seizure of the animal model established by PIFC mainly presented automatic behavior of chewing, and facial muscle convulsion accompanied with chewing. Epileptic seizure reached the peak within 2.5 to 7 hours after model establishing.It was gradually decreased within 24 hours and hardly seen 1 day after model establishing. The epileptic seizure of the rat model established by CFCI mainly presented turnover upspring and limbs' convulsion and urinary incontinence accompanied. The epileptic seizure reached the peak within 3 to 8 hours.It was relatively frequent within 1 week and gradually decreased within 2 weeks after model establishing. The PTE animal models established by CFCI were more closed to clinical PTE process. (2) The form of seizures: The epileptic seizures of the rat model established by PIFC mainly presented grade Ⅰ , seldom presented grades Ⅲ, Ⅳ and Ⅴ; The epileptic seizures of rat model established by CFCI mainly presented the head turning to the right, body's rotation, then appeared as grades Ⅳ and Ⅴ, and the whole procedure lasted 1 minute. At the interval of big seizures, grade Ⅰ was observed. From the respect of seizure manifestation, the PTE models established by CFCI were more similar to human PTE. (3) EEGs changes: The sharp waves with average frequency of 9.66 Hz and average amplitude of 183.90 μV were observed on the EEGs of the model established by PIFC when the rats were suffering seizures. The spike waves with average frequency of 16.01 Hz and average amplitude of 143.60 μV were observed on the EEGs of the model established by CFCI when the rats were suffering seizures. CONCLUSTON: (1)Iron-induced PTE rat model is stable and credible. (2)Compared with PTE animal model established by PIFC, PTE animal model established by CFCI is a chronic animal model, and its seizure manifestation is more similar to human PTE. so it is worth further studies.
文摘BACKGROUND: Electrical stimulation kindling model, having epilepsy-inducing and spontaneous seizure and other advantages, is a very ideal experimental animal model. But the kindling effect might be different at different sites. OBJECTIVE: To compare the features of animal models of complex partial epilepsy established through unilateral, bilateral and alternate-side kindling at hippocampus and successful rate of modeling among these 3 different ways. DESIGN: A randomized and controlled animal experiment SETTING: Department of Neurology, Qilu Hospital, Shandong University MATERIALS: Totally 60 healthy adult Wistar rats, weighing 200 to 300 g, of either gender, were used in this experiment. BL-410 biological functional experimental system (Taimeng Science and Technology Co. Ltd, Chengdu) and SE-7102 type electronic stimulator (Guangdian Company, Japan) were used in the experiment. METHODS: This experiment was carried out in the Experimental Animal Center of Shandong University from April to June 2004. After rats were anesthetized, electrode was implanted into the hippocampus. From the first day of measurement of afterdischarge threshold value, rats were given two-square-wave suprathreshold stimulation once per day with 400 μA intensity, 1ms wave length, 60 Hz frequency for 1 s duration. Left hippocampus was stimulated in unilateral kindling group, bilateral hippocampi were stimulated in bilateral kindling group, and left and right hippocampi were stimulated alternately every day in the alternate-side kindling group. Seizure intensity was scored: grade 0: normal, 1: wet dog-like shivering, facial spasm, such as, winking, touching the beard, rhythmic chewing and so on; 2: rhythmic nodding; 3: forelimb spasm;4: standing accompanied by bilateral forelimb spasm;5: tumbling, losing balance, four limbs spasm. Modeling was successful when seizure intensity reached grade 5. t test was used for the comparison of mean value between two samples. MAIN OUTCOME MEASURES: Comparison of the successful rate of modeling, the times of stimulation to reach intensity of grade 5, the lasting time of seizure of grade 3 of rats in each group. RESULTS: Four rats of alternate-side kindling group dropped out due to infection-induced electrode loss, and 56 rats were involved in the result analysis. The successful rate of unilateral kindling group, bilateral kin- dling group and alternate-side kindling group was 55%(11/20),100%(16/16)and 100%(20/20), respective- ly. The stimuli to reach the grade 5 spasm were significantly more in the bilateral kindling group than in the unilateral kindling group [(30.63±3.48), (19.36±3.47)times, t=8.268, P 〈 0.01], and those were significantly fewer in the alternate-side kindling group than in the unilateral kindling group [( 10.85±1.98)times, t=-8.744, P 〈 0.01]. The duration of grade 3 spasm was significantly longer in the bilateral kindling group than in the unilateral kindling group [(9.75±2.59), (3.21 ±1.58)days,t=-8.183,P 〈 0.01], Among 20 successful rats of al- ternate-side kindling group, grade 5 spasm was found in the left hippocampi of 11 rats, but grade 3 spasm in their right hippocampi; Grade 5 spasm was found in the right hippocampi of the other 9 rats, grade 4 spasm in the left hippocampus of 1 rat and grade 3 of 8 rats. CONCLUSION : The speed of establishing epilepsy seizure model by alternate-side kindling is faster than that by unilateral kindling, while that by bilateral kindling is slower than that by unilateral kindling. The successful rate is very high to establish complex partial epilepsy with alternate-side or bilateral kindling. Epilepsy seizure established by alternate-side kindling has antagonistic effect of kindling and the seizure duration of grade 3 spasm is prolonged.
基金supported by the Natural Science Foundation of Sichuan Province of China,Nos.2022NSFSC1545 (to YG),2022NSFSC1387 (to ZF)the Natural Science Foundation of Chongqing of China,Nos.CSTB2022NSCQ-LZX0038,cstc2021ycjh-bgzxm0035 (both to XT)+3 种基金the National Natural Science Foundation of China,No.82001378 (to XT)the Joint Project of Chongqing Health Commission and Science and Technology Bureau,No.2023QNXM009 (to XT)the Science and Technology Research Program of Chongqing Education Commission of China,No.KJQN202200435 (to XT)the Chongqing Talents:Exceptional Young Talents Project,No.CQYC202005014 (to XT)。
文摘Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.