A hybrid pilots assisted channel estimation algorithm for multiple input multiple output(MIMO) orthogonal frequency division multiplexing(OFDM) systems under low signal-to-noise ratio(SNR) and arbitrary Doppler ...A hybrid pilots assisted channel estimation algorithm for multiple input multiple output(MIMO) orthogonal frequency division multiplexing(OFDM) systems under low signal-to-noise ratio(SNR) and arbitrary Doppler spread scenarios is proposed.Motivated by the dissatisfactory performance of the optimal pilots(OPs) designed under static channels over multiple OFDM symbols imposed by fast fading channels,the proposed scheme first assumes that the virtual pilot tones superimposed at data locations over specific subcarriers are transmitted from all antennas,then the virtual received pilot signals at the corresponding locations can be obtained by making full use of the time and frequency domain correlations of the frequency responses of the time varying dispersive fading channels and the received signals at pilot subcarriers,finally the channel parameters are derived from the combination of the real and virtual received pilot signals over one OFDM symbol based on least square(LS) criterion.Simulation results illustrate that the proposed method is insensitive to Doppler spread and can effectively ameliorate the mean square error(MSE) floor inherent to the previous method,meanwhile its performance outmatches that of OPs at low SNR region under static channels.展开更多
This paper deals with optimal training design and placement over multiple orthogonal frequency division multiplexing(OFDM) symbols for the least squares(LS) channel estimation in multiple-input multipleoutput(MIMO) OF...This paper deals with optimal training design and placement over multiple orthogonal frequency division multiplexing(OFDM) symbols for the least squares(LS) channel estimation in multiple-input multipleoutput(MIMO) OFDM systems.First,the optimal pilot sequences over multiple OFDM symbols are derived by co-cyclic Jacket matrices based on the minimum mean square error(MSE) of the LS channel estimation.Then,an enhanced channel estimation method using sliding window is proposed to improve further the performance for the optimal pilot sequences in fast-varying channels.Simulation results show that the enhancedmethod can efficiently improve the performances for the optimal pilot sequences over two and four OFDM symbols,especially in fast-varying channels.展开更多
基金supported by the National High Technology Research and Development Program of China (863 Program) (2007AA01Z288)the National Natural Science Foundation of China (60702057)+2 种基金the National Science Fund for Distinguished Young Scholars (60725105)the Program for Changjiang Scholars and Innovative Research Team in University (IRT0852)the Fundamental Research Projects,Xidian University (JY10000901030)
文摘A hybrid pilots assisted channel estimation algorithm for multiple input multiple output(MIMO) orthogonal frequency division multiplexing(OFDM) systems under low signal-to-noise ratio(SNR) and arbitrary Doppler spread scenarios is proposed.Motivated by the dissatisfactory performance of the optimal pilots(OPs) designed under static channels over multiple OFDM symbols imposed by fast fading channels,the proposed scheme first assumes that the virtual pilot tones superimposed at data locations over specific subcarriers are transmitted from all antennas,then the virtual received pilot signals at the corresponding locations can be obtained by making full use of the time and frequency domain correlations of the frequency responses of the time varying dispersive fading channels and the received signals at pilot subcarriers,finally the channel parameters are derived from the combination of the real and virtual received pilot signals over one OFDM symbol based on least square(LS) criterion.Simulation results illustrate that the proposed method is insensitive to Doppler spread and can effectively ameliorate the mean square error(MSE) floor inherent to the previous method,meanwhile its performance outmatches that of OPs at low SNR region under static channels.
基金the National Natural Science Foundation of China (Nos. 60332030 and 60625103)the Science and Technology Commission of Shanghai Municipality (STCSM) (No. 05DZ22102)the National High Technology Research and Development Program(863) of China (No. 2007AA01Z237)
文摘This paper deals with optimal training design and placement over multiple orthogonal frequency division multiplexing(OFDM) symbols for the least squares(LS) channel estimation in multiple-input multipleoutput(MIMO) OFDM systems.First,the optimal pilot sequences over multiple OFDM symbols are derived by co-cyclic Jacket matrices based on the minimum mean square error(MSE) of the LS channel estimation.Then,an enhanced channel estimation method using sliding window is proposed to improve further the performance for the optimal pilot sequences in fast-varying channels.Simulation results show that the enhancedmethod can efficiently improve the performances for the optimal pilot sequences over two and four OFDM symbols,especially in fast-varying channels.