Massive multiple-input multiple-output(massive MIMO)is a promising approach in wireless communication systems for providing improved link reliability and spectral effi-ciency and it helps several users.The main aim is...Massive multiple-input multiple-output(massive MIMO)is a promising approach in wireless communication systems for providing improved link reliability and spectral effi-ciency and it helps several users.The main aim is to solve pilot contamination issue in massive MIMO systems;this research paper utilizes two approaches for reducing the contamination.This paper presents the user grouping approach based on sparse fuzzy C-means clustering(sparse FCM),which groups user parameters based on parameters such as large-scale fading factor,SINR,and user distance.Here,same pilot sequences are assigned to center users in which the impact of pilot contamination is limited,while the algorithm assigns orthogonal pilot sequences to the edge users that suffer severely from pilot contamination.Therefore,the proposed user grouping keeps away from the inappropriate grouping of users,enabling effective grouping even under the worst situations of the channel.Secondly,pilot scheduling is done based on elephant spider monkey optimization(ESMO),which is designed by integrating elephant herding optimization(EHO)into spider monkey optimization(SMO).The performance of pilot scheduling based on grouping-based ESMO is evaluated based on achievable rate and SINR.The proposed method achieves maximal achievable rate of 41.29 bps/Hz and maximal SINR of 124.31 dB.展开更多
Dear Sir,Iam Dr.Emile Calenda,from the Department of Anesthesiology in Ophthalmology,Rouen University Hospital,Institute for Biomedical Research,Rouen,France.I write to present ultrasound visualization of local anesth...Dear Sir,Iam Dr.Emile Calenda,from the Department of Anesthesiology in Ophthalmology,Rouen University Hospital,Institute for Biomedical Research,Rouen,France.I write to present ultrasound visualization of local anesthetic spread after a sub-Tenon's anesthesia(3 patients)and after a peribulbar anesthesia(3 patients).展开更多
文摘Massive multiple-input multiple-output(massive MIMO)is a promising approach in wireless communication systems for providing improved link reliability and spectral effi-ciency and it helps several users.The main aim is to solve pilot contamination issue in massive MIMO systems;this research paper utilizes two approaches for reducing the contamination.This paper presents the user grouping approach based on sparse fuzzy C-means clustering(sparse FCM),which groups user parameters based on parameters such as large-scale fading factor,SINR,and user distance.Here,same pilot sequences are assigned to center users in which the impact of pilot contamination is limited,while the algorithm assigns orthogonal pilot sequences to the edge users that suffer severely from pilot contamination.Therefore,the proposed user grouping keeps away from the inappropriate grouping of users,enabling effective grouping even under the worst situations of the channel.Secondly,pilot scheduling is done based on elephant spider monkey optimization(ESMO),which is designed by integrating elephant herding optimization(EHO)into spider monkey optimization(SMO).The performance of pilot scheduling based on grouping-based ESMO is evaluated based on achievable rate and SINR.The proposed method achieves maximal achievable rate of 41.29 bps/Hz and maximal SINR of 124.31 dB.
文摘Dear Sir,Iam Dr.Emile Calenda,from the Department of Anesthesiology in Ophthalmology,Rouen University Hospital,Institute for Biomedical Research,Rouen,France.I write to present ultrasound visualization of local anesthetic spread after a sub-Tenon's anesthesia(3 patients)and after a peribulbar anesthesia(3 patients).