期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Effect of Shape and Placement of Twisted Pin Fins in a Rectangular Channel on Thermo-Hydraulic Performance
1
作者 LI Yong ZHANG Jin +4 位作者 ZHANG Yingchun ZHANG Jiajie MA Suxia SUNDEN Bengt XIE Gongnan 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第5期1773-1793,共21页
To enhance the thermo-hydraulic performance of cooling channels,this investigation examines the influence of distinct cross-sectional shapes(i.e.,triangular,rectangular,and hexagonal)of twisted pin fins and their arra... To enhance the thermo-hydraulic performance of cooling channels,this investigation examines the influence of distinct cross-sectional shapes(i.e.,triangular,rectangular,and hexagonal)of twisted pin fins and their arrangements in straight and cross rows.An ambient air cooling test platform was established to numerically and experimentally investigate the flow and heat transfer characteristics of 360°twisted pin fins at Re=15200-22800.The findings reveal that straight rows exhibit higher Nu values than cross rows for triangular and rectangular twisted pin fins,and Nu increases with Re.In contrast,for hexagonal twisted pin fins,only straight rows at Re=19000 exhibit superior overall thermal performance compared to cross rows.Notably,the heat transfer performance of the cooling channel with hexagonal twisted fins surpasses both triangular and rectangular configurations,especially at high Reynolds numbers(Re=22800).Although the heat transfer coefficient of the cooling channel with hexagonal twisted fins is significantly enhanced by 132.71%compared to the flat channel,it also exhibits the highest thermal resistance and relative friction among the three types of twisted fins,the maximum of which are 2.14 and 16.55.Furthermore,the hydrothermal performance factor(HTPF)of the cooling channels with different types of twisted pin fins depends on the Reynolds number and arrangement modes.At Re=15200,the highest HTPF achieved for the cross-row hexagonal twisted pin fins is 0.99. 展开更多
关键词 twisted pin fin cross arrangement heat transfer pressure drop HTPF
原文传递
Investigation on flow and heat transfer characteristics in rectangular channel with drop-shaped pin fins 被引量:4
2
作者 Fengming Wang Jingzhou Zhang Suofang Wang 《Propulsion and Power Research》 SCIE 2012年第1期64-70,共7页
The flow and heat transfer characteristics inside a rectangular channel embedded with pin fins were numerically and experimentally investigated.Several differently shaped pin fins(i.e.,circular,elliptical,and drop-sha... The flow and heat transfer characteristics inside a rectangular channel embedded with pin fins were numerically and experimentally investigated.Several differently shaped pin fins(i.e.,circular,elliptical,and drop-shaped)with the same cross-sectional areas were compared in a staggered arrangement.The Reynolds number based on the obstructed section hydraulic diameter(defined as the ratio of the total wetted surface area to the open duct volume available for flow)was varied from 4800 to 8200.The more streamlined drop-shaped pin fins were better at delaying or suppressing separation of the flow passing through them,which decreased the aerodynamic penalty compared to circular pin fins.The heat transfer enhancement of the drop-shaped pin fins was less than that of the circular pin fins.In terms of specific performance parameters,drop-shaped pin fins are a promising alternative configuration to circular pin fins. 展开更多
关键词 Enhanced heat transfer pin fins Drop-shaped pin fins Pressure loss Specific friction loss
原文传递
Time-accurate CFD conjugate analysis of transient measurements of the heat-transfer coefficient in a channel with pin fins 被引量:1
3
作者 Tom I-P.Shih Saiprashanth Gomatam Ramachandran Minking K.Chyu 《Propulsion and Power Research》 SCIE 2013年第1期10-19,共10页
Heat-transfer coefficients(HTC)on surfaces exposed to convection environments are often measured by transient techniques such as thermochromic liquid crystal(TLC)or infrared thermography.In these techniques,the surfac... Heat-transfer coefficients(HTC)on surfaces exposed to convection environments are often measured by transient techniques such as thermochromic liquid crystal(TLC)or infrared thermography.In these techniques,the surface temperature is measured as a function of time,and that measurement is used with the exact solution for unsteady,zero-dimensional(0-D)or one-dimensional(1-D)heat conduction into a solid to calculate the local HTC.When using the 0-D or 1-D exact solutions,the transient techniques assume the HTC and the free-stream or bulk temperature characterizing the convection environment to be constants in addition to assuming the conduction into the solid to be 0-D or 1-D.In this study,computational fluid dynamics(CFD)conjugate analyses were performed to examine the errors that might be invoked by these assumptions for a problem,where the free-stream/bulk temperature and the heat-transfer coefficient vary appreciably along the surface and where conduction into the solid may not be 0-D or 1-D.The problem selected to assess these errors is flow and heat transfer in a channel lined with a staggered array of pin fins.This conjugate study uses three-dimensional(3-D)unsteady Reynolds-averaged Navier-Stokes(RANS)closed by the shear-stress transport(SST)turbulence model for the gas phase(wall functions not used)and the Fourier law for the solid phase.The errors in the transient techniques are assessed by comparing the HTC predicted by the time-accurate conjugate CFD with those predicted by the 0-D and 1-D exact solutions,where the surface temperatures needed by the exact solutions are taken from the time-accurate conjugate CFD solution.Results obtained show that the use of the 1-D exact solution for the semi-infinite wall to give reasonably accurate“transient”HTC(less than 5%〇relative error).Transient techniques that use the 0-D exact solution for the pin fins were found to produce large errors(up to 160%relative error)because the HTC varies appreciably about each pin fin.This study also showed that HTC measured by transient techniques could differ considerably from the HTC obtained under steady-state conditions with isothermal walls. 展开更多
关键词 Heat-transfer coefficient(HTC) Transient technique pin fins Time-accurate computational fluid dynamics(CFD)conjugate analysis
原文传递
Fabrication of micro pin fins on inclined V-shaped microchannel walls via laser micromilling
4
作者 Da-Xiang Deng Jian Zheng +2 位作者 Xiao-Long Chen Guang Pi Yong-Heng Liu 《Advances in Manufacturing》 SCIE EI CAS CSCD 2022年第2期220-234,共15页
A laser-micromilling process was developed for fabricating micro pin fins on inclined V-shaped microchannel walls for enhanced microchannel heat sinks.A pulsed nanosecond fiber laser was utilized.The feasibility and m... A laser-micromilling process was developed for fabricating micro pin fins on inclined V-shaped microchannel walls for enhanced microchannel heat sinks.A pulsed nanosecond fiber laser was utilized.The feasibility and mechanism of the formation of micro pin fins on inclined microchannel walls were investigated for a wide range of processing parameters.The effects of the laser output power,scanning speed,and line spacing on the surface morphologies and geometric sizes of the micro-pin fins were comprehensively examined,together with the material removal mechanisms.Micro pin fins with acute cone tips were readily formed on the V-shaped microchannel walls via the piling of recast layers and the downflow of re-solidified materials in the laser-ablation process.The pin-fin height exhibited an increasing trend when the scanning speed increased from 100mm/s to 300 mm/s,and it decreased continuously when the line spacing increased from 5μm to 20μm.The optimal processing parameters for preparing micro pin fins on V-shaped microchannels were found to be a laser output power of 21 W,scanning speed of 100-300 mm/s,and line spacing of 2-5μm.Moreover,the V-shaped microchannels with micro pin fins induced a 7%-538%boiling heat-transfer enhancement over their counterpart without micro pin fins. 展开更多
关键词 Laser micromilling Micro pin fins:Microchannels Inclined walls Laser ablation
原文传递
An Experimental Investigation of Aero-Foil-Shaped Pin Fin Arrays
5
作者 Mainak Bhaumik Anirban Sur Kavita Dhanawade 《Frontiers in Heat and Mass Transfer》 EI 2023年第1期467-486,共20页
Pin fins are widely used in applications where effective heat transfer is crucial.Their compact design,high surface area,and efficient heat transfer characteristics make them a practical choice for many thermal manage... Pin fins are widely used in applications where effective heat transfer is crucial.Their compact design,high surface area,and efficient heat transfer characteristics make them a practical choice for many thermal management applications.But for a high heat transfer rate and lightweight application,aerofoil shape pin fins are a good option.This work focuses on an experimental model analysis of pin-fins with aerofoil shapes.The results were evaluated between perforation,no perforation,inline,and staggered fin configurations.Aluminum is used to make the pin fins array.The experiment is carried out inside a wind tunnel,and the heat supply varies between 500 to 3000 W.An electric heater,fan,anemometer,thermocouple,pressure transmitter,data logger,and computer system were used for this experiment.The friction factor,thermal efficiency,performance efficacy,and pressure drop of a pin fin aerofoil shape have been assessed.A comparison study was carried out with and without perforations and inline and staggered arrangements.In terms of overall efficacy,different aerofoil shape pin fin arrays achieve values varying between 1.8 and 14.7.The acquired data demonstrate that perforated staggered configurations perform 10%better than inline.Furthermore,the pressure drop is reduced by 50%in staggered setups.The empirical correlation of Dittus-Bolter and Blasius correlations was used to validate the experimental heat dissipation enhancement factor requirements of Nusselt number and friction factor.The validation of the experiment using correlation has been completed satisfactorily.Hence,experimental results prove that aerofoil pin-fin arrays can be used successfully for applications like the electronics industry,heat exchangers and gas turbine blade cooling. 展开更多
关键词 Aerofoil pin-fin array inline and staggered arrangements heat dissipation rate pin fin efficiency performance
下载PDF
Experimental Verification of Model for Liquid-Cooled Staggered Pin Fin Heat Sinks with Top Bypass Flow 被引量:1
6
作者 Keisuke Horiuchi Atsuo Nishihara 《Journal of Energy and Power Engineering》 2013年第8期1487-1495,共9页
Pressure drops and heat transfer over staggered pin fin heat sinks with top bypass flow were experimentally evaluated. The authors considered liquid-cooling applications because there were few data available comparing... Pressure drops and heat transfer over staggered pin fin heat sinks with top bypass flow were experimentally evaluated. The authors considered liquid-cooling applications because there were few data available comparing to air-cooling applications. Empirical equations to predict heat transfer on the endwall were developed by obtaining experimental data on the copper base plate with acrylic pins. A new model for predicting pressure drops and heat transfer over staggered pin fin heat sinks with top bypass flow based on mass, momentum, and energy conservation within the two control volumes is proposed. The first control volume in the model is located within the finned area, and the second is located in the gap between the tip of the pins and the flow channel. This model combines two conditions according to the boundary-layer thickness. A comparison between experimental and calculated results revealed that dimensionless pressure drops and the Nusselt number could be predicted within 30% error for the former and 50% error for the latter. 展开更多
关键词 MODELING heat transfer pressure drop pin fin heat sinks endwall effect CORRELATIONS liquid cooling.
下载PDF
Evaluation on Heat Transferring Performance of Fabric Heat Sink by Finite Element Modeling
7
作者 杨旭东 张华帅 +2 位作者 胡吉永 路玉环 李毓陵 《Journal of Donghua University(English Edition)》 EI CAS 2016年第4期619-624,共6页
Considering the limitation in current manufacturing technology of commercial pin fin heat sinks,a new fabric heat sink has been designed. However,it is lack of an understanding of the heat transferring performance of ... Considering the limitation in current manufacturing technology of commercial pin fin heat sinks,a new fabric heat sink has been designed. However,it is lack of an understanding of the heat transferring performance of this new kind of heat sink. In this study,the finite element method (FEM) was used to predict the heat transferring performance of fabric heat sink under the condition of natural convection and forced convection, and its heat transferring performance was compared with that of pin fin heat sink. The results showed that in the condition of natural convection the heat transferring performance of pin fin heat sink was better than that of fabric heat sink, and vice versa under the forced convection condition. 展开更多
关键词 fabric heat sink pin fin heat sink natural convection forced convection heat transferring
下载PDF
Second Law Analysis of the Optimal Fin by Minimum Entropy Generation
8
作者 苏亚欣 周睿杰 《Journal of Donghua University(English Edition)》 EI CAS 2005年第4期25-28,共4页
Based on the entropy generation concept of thermodynamics, this paper estabfished a general theoretical model for the analysis of entropy generation to optimize fins, in which the minimum entropy generation was select... Based on the entropy generation concept of thermodynamics, this paper estabfished a general theoretical model for the analysis of entropy generation to optimize fins, in which the minimum entropy generation was selected as the object to be studied. The irreversibility due to heat transfer and friction was taken into account so that the minimum entropy generation number has been analyzed with respect to second law of thermodynamics in the forced cross-flow. The optimum dimensions of cylinder pins were discussed. It's found that the minimum entropy generation number depends on parameters related to the fluid and fin physical parameters. Varlatioms of the minimum entropy generation number with different parameters were analyzed. 展开更多
关键词 forced convective heat transfer minimum entropy generation second law analysis pin fin.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部