The non-coaxial model simulating the non-coincidence between the principal stresses and the principal plastic strain rates is employed within the framework of finite element method(FEM) to predict the behaviors of a...The non-coaxial model simulating the non-coincidence between the principal stresses and the principal plastic strain rates is employed within the framework of finite element method(FEM) to predict the behaviors of anchors embedded in granular material.The non-coaxial model is developed based on the non-coaxial yield vertex theory,and the elastic and conventional coaxial plastic deformations are simulated by using elasto-perfectly plastic Drucker-Prager yield function according to the original yield vertex theory.Both the horizontal and vertical anchors with various embedment depths are considered.Different anchor shapes and soil friction and dilation angles are also taken into account.The predictions indicate that the use of non-coaxial models leads to softer responses,compared with those using conventional coaxial models.Besides,the predicted ultimate pulling capacities are the same for both coaxial and non-coaxial models.The non-coaxial influences increase with the increasing embedment depths,and circular anchors lead to larger non-coaxial influences than strip anchors.In view of the fact that the design of anchors is mainly determined by their displacements,ignoring the non-coaxiality in finite element numerical analysis can lead to unsafe results.展开更多
基金Supported by an EPSRC grant(GR/S29232/01)from the UK Government
文摘The non-coaxial model simulating the non-coincidence between the principal stresses and the principal plastic strain rates is employed within the framework of finite element method(FEM) to predict the behaviors of anchors embedded in granular material.The non-coaxial model is developed based on the non-coaxial yield vertex theory,and the elastic and conventional coaxial plastic deformations are simulated by using elasto-perfectly plastic Drucker-Prager yield function according to the original yield vertex theory.Both the horizontal and vertical anchors with various embedment depths are considered.Different anchor shapes and soil friction and dilation angles are also taken into account.The predictions indicate that the use of non-coaxial models leads to softer responses,compared with those using conventional coaxial models.Besides,the predicted ultimate pulling capacities are the same for both coaxial and non-coaxial models.The non-coaxial influences increase with the increasing embedment depths,and circular anchors lead to larger non-coaxial influences than strip anchors.In view of the fact that the design of anchors is mainly determined by their displacements,ignoring the non-coaxiality in finite element numerical analysis can lead to unsafe results.