BZ]Dendro dendritic and dendro somatic projections are common between spinal motoneurons. We attempted to clarify whether there are functional connections through these projections. Methods. Motoneurons were antidromi...BZ]Dendro dendritic and dendro somatic projections are common between spinal motoneurons. We attempted to clarify whether there are functional connections through these projections. Methods. Motoneurons were antidromically stimulated by the muscle nerve and recorded intracellularly to examine the direct interaction between them, after the related dorsal roots had been cut. Results. Excitatory connections, demonstrated by depolarizing potentials in response to muscle nerve stimulation, were found between motoneurons innervating the same muscle or synergistic muscles, but never between motoneurons innervating antagonistic muscles. These potentials were finely graded in response to a series of increasing stimuli and resistant to high frequency (50Hz) stimulation. Conclusions.These results indicate that excitatory connections, with certain specificity of spatial and temporal distribution, occur in the spinal motoneurons. It is also suggested that electrical coupling should be involved in these connections and this mechanism should improve the excitability of the motoneurons in the same column.展开更多
Brain connectivity is commonly studied in terms of causal interaction or statistical dependency between brain regions. In this analysis paper, we draw attention to the constraining effect the dynamics of fiber tract c...Brain connectivity is commonly studied in terms of causal interaction or statistical dependency between brain regions. In this analysis paper, we draw attention to the constraining effect the dynamics of fiber tract connections may impose on neuronal signal traffic. We propose a model developed by Copelli and Kinouchi (l.c.) for a different purpose to safeguard signal transmission for brain connectivity by ensuring dynamic adaptation of signal reception to a wide frequency range of traffic flow over connecting fiber tracts. Gap junction connectivity would confer to neuronal groups the capacity of acting as collectives for dynamical adaptability to impinging neural traffic thereby forestalling traffic congestion and overload. It is suggested that applying this model to signal reception in brain connectivity would deliver the required functionality as a collective achievement of the interrelations between neurons and gap junctions, the latter regulated by glia.展开更多
基金This study was supported by the grant from ClimbingProgram of Chinese Committee of Science
文摘BZ]Dendro dendritic and dendro somatic projections are common between spinal motoneurons. We attempted to clarify whether there are functional connections through these projections. Methods. Motoneurons were antidromically stimulated by the muscle nerve and recorded intracellularly to examine the direct interaction between them, after the related dorsal roots had been cut. Results. Excitatory connections, demonstrated by depolarizing potentials in response to muscle nerve stimulation, were found between motoneurons innervating the same muscle or synergistic muscles, but never between motoneurons innervating antagonistic muscles. These potentials were finely graded in response to a series of increasing stimuli and resistant to high frequency (50Hz) stimulation. Conclusions.These results indicate that excitatory connections, with certain specificity of spatial and temporal distribution, occur in the spinal motoneurons. It is also suggested that electrical coupling should be involved in these connections and this mechanism should improve the excitability of the motoneurons in the same column.
文摘Brain connectivity is commonly studied in terms of causal interaction or statistical dependency between brain regions. In this analysis paper, we draw attention to the constraining effect the dynamics of fiber tract connections may impose on neuronal signal traffic. We propose a model developed by Copelli and Kinouchi (l.c.) for a different purpose to safeguard signal transmission for brain connectivity by ensuring dynamic adaptation of signal reception to a wide frequency range of traffic flow over connecting fiber tracts. Gap junction connectivity would confer to neuronal groups the capacity of acting as collectives for dynamical adaptability to impinging neural traffic thereby forestalling traffic congestion and overload. It is suggested that applying this model to signal reception in brain connectivity would deliver the required functionality as a collective achievement of the interrelations between neurons and gap junctions, the latter regulated by glia.