The pinch point is important for analyzing heat transfer in thermodynamic cycles. With the aim to reveal the importance of determining the accurate pinch point, the research on the pinch point position is carried out ...The pinch point is important for analyzing heat transfer in thermodynamic cycles. With the aim to reveal the importance of determining the accurate pinch point, the research on the pinch point position is carried out by theoretical method. The results show that the pinch point position depends on the parameters of the heat transfer fluids and the major fluid properties. In most cases, the pinch point locates at the bubble point for the evaporator and the dew point for the condenser. However, the pinch point shills to the supercooled liquid state in the near critical conditions for the evaporator. Similarly, it shifts to the superheated vapor state with the condensing temperature approaching the critical temperature for the condenser. It even can shift to the working fluid entrance of the evaporator or the supereritical heater when the heat source fluid temperature is very high compared with the absorb- ing heat temperature. A wrong position for the pinch point may generate serious mistake. In brief, the pinch point should be founded by the itcrativc method in all conditions rather than taking for granted.展开更多
运用夹点技术对加氢裂化装置的换热网络进行优化,利用Aspen Energy Analyzer V 8.4软件模拟换热网络曲线对换热网络的特点进行分析,提出相应的优化方案,并利用Aspen Hysys模拟软件对优化方案进行模拟。结果表明:该换热网络的夹点温度为1...运用夹点技术对加氢裂化装置的换热网络进行优化,利用Aspen Energy Analyzer V 8.4软件模拟换热网络曲线对换热网络的特点进行分析,提出相应的优化方案,并利用Aspen Hysys模拟软件对优化方案进行模拟。结果表明:该换热网络的夹点温度为147.2℃,装置换热网络最小热公用工程用量为7.72 MW,最小冷公用工程用量为8.39 MW,节能潜力仍有6.67 MW;通过采用新增1台换热器E 1(利旧),利用152℃的柴油给45.5℃的冷低分油换热的优化方案,可分别节约热、冷公用工程2.11,0.36 MW,热、冷公用工程节能效率分别为27.34%,4.29%。展开更多
基金Project 51306198 supported by National Natural Science Foundation of China is gratefully acknowledged
文摘The pinch point is important for analyzing heat transfer in thermodynamic cycles. With the aim to reveal the importance of determining the accurate pinch point, the research on the pinch point position is carried out by theoretical method. The results show that the pinch point position depends on the parameters of the heat transfer fluids and the major fluid properties. In most cases, the pinch point locates at the bubble point for the evaporator and the dew point for the condenser. However, the pinch point shills to the supercooled liquid state in the near critical conditions for the evaporator. Similarly, it shifts to the superheated vapor state with the condensing temperature approaching the critical temperature for the condenser. It even can shift to the working fluid entrance of the evaporator or the supereritical heater when the heat source fluid temperature is very high compared with the absorb- ing heat temperature. A wrong position for the pinch point may generate serious mistake. In brief, the pinch point should be founded by the itcrativc method in all conditions rather than taking for granted.