The increase in oil prices and greenhouse gas emissions has led to the search for substitutes for fossil fuels. In Cameroon, the abundance of lignocellulosic resources is inherent to agricultural activity. Production ...The increase in oil prices and greenhouse gas emissions has led to the search for substitutes for fossil fuels. In Cameroon, the abundance of lignocellulosic resources is inherent to agricultural activity. Production of bioethanol remains a challenge given the crystallinity of cellulose and the presence of the complex. The pretreatment aimed to solubilize the lignin fraction and to make cellulose more accessible to the hydrolytic enzymes, was done using the organosolv process. A mathematical modeling was performed to point out the effect of the temperature on the kinetics of the release of the reducing sugars during the pretreatment. Two mathematical model was used, SAEMAN’s model and Response surface methodology. The first show that the kinetic parameters of the hydrolysis of the cellulose and reducing sugar are: 0.05089 min<sup>-1</sup>, 5358.1461 J·mol<sup>-1</sup>, 1383.03691 min<sup>-1</sup>, 51577.6100 J·mol<sup>-1</sup> respectively. The second model was used. Temperature is the factor having the most positive influence whereas, ethanol concentration is not an essential factor. To release the maximum, an organosolv pre-treatment of this sub-strate should be carried out at 209.08°C for 47.60 min with an ethanol-water ratio of 24.02%. Organosolv pre-treatment is an effective process for delignification of the lignocellulosic structure.展开更多
Corn is a high starchy cereal crop with the highest production and provides over 85%of the starch produced worldwide.Various by-products,differentiated by technological process features such as steep liquor,corn germ,...Corn is a high starchy cereal crop with the highest production and provides over 85%of the starch produced worldwide.Various by-products,differentiated by technological process features such as steep liquor,corn germ,corn bran,gluten,are created largely during corn starch processing.They are inexpensive,nutrient-rich,and vary widely in chemical composition such as proteins,oils,carbohydrates,and minerals.In an increasingly resource-constrained modern world,the utilization approach of these by-products for non-starch industrial processing is attractive widely considering both nutritive value and economic aspects.In fact,at present,applications of these by-products can often be found in feed,fermentation,nutrient extraction and other industries.For example,protein-rich corn gluten can be used as a good animal feed,and corn germ can be used as a raw material for the high-quality edible oil industry.Undoubtedly,increasing utilization means that these by-products will no longer be treated as waste but will be transformed into high value-added products.In this work,the separation process and chemical composition of several main by-products of the corn starch industry is briefly described,and the application in many industrial fields of these by-products over the last ten years are discussed in particular.This review attempts to summarize all aspects of the application and research of these by-products.For the by-products of the corn starch industry,the most promising way is to be utilized in high value and used to produce high value-added products.According to the characteristics of their chemical composition,they have a better application prospect and research significance in the industries directly related to human beings,such as medicine,green food and health care products.In fact,in recent years,some researchers have recognized this and carried out the research.It is clear fromthese studies that the main issues to be faced nowand in the future are how to produce efficiently while maintaining the quality of the product and using it effectively.The retrospective discussions also provide some ideas for other grain and oilseed crops to be fully utilized.展开更多
Sesame seeds are promulgated as traditional high-quality edible oil crops,rich in lipid(40–65%),protein(19–35%),and bioactive compounds.The review starts with bioactive components(fatty acid,tocopherol,phytosterol,s...Sesame seeds are promulgated as traditional high-quality edible oil crops,rich in lipid(40–65%),protein(19–35%),and bioactive compounds.The review starts with bioactive components(fatty acid,tocopherol,phytosterol,sesamin,sesamolin,and sesamol)of sesame seeds.It considers processing techniques for extracting oil(aqueous extraction and pressing)from seeds.Novel technologies,such as enzyme-assisted aqueous,supercritical CO_(2),and microwave-assisted solvent extraction,are also discussed.The methods of utilization of sesame seed cake are also analyzed.In the future,the processing technology of sesame seed will be further developed in the direction of improving comprehensive utilization rate to meet new consumption demand.展开更多
为利用干酪乳杆菌制备发酵菠萝果汁饮品,本研究对干酪乳杆菌LK-1(Lactobacillus casei LK-1,L. casei LK-1)的生长曲线、产酸、耐酸和耐糖等特性进行研究分析,并以活菌数和总酸为指标,通过单因素实验及响应面法考察L. casei LK-1发酵菠...为利用干酪乳杆菌制备发酵菠萝果汁饮品,本研究对干酪乳杆菌LK-1(Lactobacillus casei LK-1,L. casei LK-1)的生长曲线、产酸、耐酸和耐糖等特性进行研究分析,并以活菌数和总酸为指标,通过单因素实验及响应面法考察L. casei LK-1发酵菠萝果汁的最佳条件。结果表明,L. casei LK-1在pH5~7和0%~10%质量分数葡萄糖环境下,具备良好的生长繁殖能力;在酸性(pH3)和高糖(40%质量分数葡萄糖)环境中培养3 h,其存活率分别为76%和71%;在MRS培养基中培养48 h,产酸量为5.35 g/kg,产酸能力良好,适用于果汁的发酵。L. casei LK-1发酵菠萝果汁的最佳条件为:初始pH6.8,发酵温度37℃,接种量1%(v/v),发酵时间30 h,此条件下制备的发酵菠萝果汁饮品活菌数为8.99±0.04 lg CFU/mL,总酸含量为7.16±0.26 g/kg,且色泽鲜亮,酸甜适口,风味较好,为L. casei LK-1在发酵食品中的进一步应用提供了理论和技术依据。展开更多
Currently,the process parameters for compression molding of pineapple rind residue are not clear.In view of this problem,a single die hole compression molding test device was designed in this study,and the force of ma...Currently,the process parameters for compression molding of pineapple rind residue are not clear.In view of this problem,a single die hole compression molding test device was designed in this study,and the force of material in a mold hole was analyzed.Using the test device,a three-factor three-level orthogonal test was carried out by using the particle size,moisture content,and die hole length-to-diameter ratio of pineapple rind residue as the factors and the particle molding rate,relax density,and specific energy consumption as the indicators.The test results were analyzed by range analysis,variance analysis,and fuzzy comprehensive evaluation.The test results show that the main and secondary factors affecting the comprehensive performance of pineapple rind residue compression molding are length-to-diameter ratio,particle size,and moisture content.The optimal parameter combination is the material particle size of 6-9 mm,moisture content of 16%,and length-to-diameter ratio of 4:1.The best indicators under these conditions are particle molding rate of 97.80%,relax density of 1.32 g/cm,and specific energy consumption of 44.17 J/g.These research results can provide a reference for the selection of processing parameters and the design of molding equipment.展开更多
文摘The increase in oil prices and greenhouse gas emissions has led to the search for substitutes for fossil fuels. In Cameroon, the abundance of lignocellulosic resources is inherent to agricultural activity. Production of bioethanol remains a challenge given the crystallinity of cellulose and the presence of the complex. The pretreatment aimed to solubilize the lignin fraction and to make cellulose more accessible to the hydrolytic enzymes, was done using the organosolv process. A mathematical modeling was performed to point out the effect of the temperature on the kinetics of the release of the reducing sugars during the pretreatment. Two mathematical model was used, SAEMAN’s model and Response surface methodology. The first show that the kinetic parameters of the hydrolysis of the cellulose and reducing sugar are: 0.05089 min<sup>-1</sup>, 5358.1461 J·mol<sup>-1</sup>, 1383.03691 min<sup>-1</sup>, 51577.6100 J·mol<sup>-1</sup> respectively. The second model was used. Temperature is the factor having the most positive influence whereas, ethanol concentration is not an essential factor. To release the maximum, an organosolv pre-treatment of this sub-strate should be carried out at 209.08°C for 47.60 min with an ethanol-water ratio of 24.02%. Organosolv pre-treatment is an effective process for delignification of the lignocellulosic structure.
基金The authors gratefully acknowledge the financial support provided by the Doctor Research Fund of Henan University of Technology(2020BS009)Science,Technology and Innovation in the Soybean and its Alternative Crops Chain(SQ2019YFD100114).
文摘Corn is a high starchy cereal crop with the highest production and provides over 85%of the starch produced worldwide.Various by-products,differentiated by technological process features such as steep liquor,corn germ,corn bran,gluten,are created largely during corn starch processing.They are inexpensive,nutrient-rich,and vary widely in chemical composition such as proteins,oils,carbohydrates,and minerals.In an increasingly resource-constrained modern world,the utilization approach of these by-products for non-starch industrial processing is attractive widely considering both nutritive value and economic aspects.In fact,at present,applications of these by-products can often be found in feed,fermentation,nutrient extraction and other industries.For example,protein-rich corn gluten can be used as a good animal feed,and corn germ can be used as a raw material for the high-quality edible oil industry.Undoubtedly,increasing utilization means that these by-products will no longer be treated as waste but will be transformed into high value-added products.In this work,the separation process and chemical composition of several main by-products of the corn starch industry is briefly described,and the application in many industrial fields of these by-products over the last ten years are discussed in particular.This review attempts to summarize all aspects of the application and research of these by-products.For the by-products of the corn starch industry,the most promising way is to be utilized in high value and used to produce high value-added products.According to the characteristics of their chemical composition,they have a better application prospect and research significance in the industries directly related to human beings,such as medicine,green food and health care products.In fact,in recent years,some researchers have recognized this and carried out the research.It is clear fromthese studies that the main issues to be faced nowand in the future are how to produce efficiently while maintaining the quality of the product and using it effectively.The retrospective discussions also provide some ideas for other grain and oilseed crops to be fully utilized.
基金The Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2016-OCRI)Wuhan Scientific and Technical Payoffs Transformation Project(2019030703011505)Earmarked Fund for China Agriculture Research System(CARS-14).
文摘Sesame seeds are promulgated as traditional high-quality edible oil crops,rich in lipid(40–65%),protein(19–35%),and bioactive compounds.The review starts with bioactive components(fatty acid,tocopherol,phytosterol,sesamin,sesamolin,and sesamol)of sesame seeds.It considers processing techniques for extracting oil(aqueous extraction and pressing)from seeds.Novel technologies,such as enzyme-assisted aqueous,supercritical CO_(2),and microwave-assisted solvent extraction,are also discussed.The methods of utilization of sesame seed cake are also analyzed.In the future,the processing technology of sesame seed will be further developed in the direction of improving comprehensive utilization rate to meet new consumption demand.
文摘为利用干酪乳杆菌制备发酵菠萝果汁饮品,本研究对干酪乳杆菌LK-1(Lactobacillus casei LK-1,L. casei LK-1)的生长曲线、产酸、耐酸和耐糖等特性进行研究分析,并以活菌数和总酸为指标,通过单因素实验及响应面法考察L. casei LK-1发酵菠萝果汁的最佳条件。结果表明,L. casei LK-1在pH5~7和0%~10%质量分数葡萄糖环境下,具备良好的生长繁殖能力;在酸性(pH3)和高糖(40%质量分数葡萄糖)环境中培养3 h,其存活率分别为76%和71%;在MRS培养基中培养48 h,产酸量为5.35 g/kg,产酸能力良好,适用于果汁的发酵。L. casei LK-1发酵菠萝果汁的最佳条件为:初始pH6.8,发酵温度37℃,接种量1%(v/v),发酵时间30 h,此条件下制备的发酵菠萝果汁饮品活菌数为8.99±0.04 lg CFU/mL,总酸含量为7.16±0.26 g/kg,且色泽鲜亮,酸甜适口,风味较好,为L. casei LK-1在发酵食品中的进一步应用提供了理论和技术依据。
基金The research work was supported by the Special Funds for Scientific Research in Public Welfare Industries(Agriculture)"Comprehensive Utilization of By-products of Horticultural Crop Products Processing"(Grant No.201503142).
文摘Currently,the process parameters for compression molding of pineapple rind residue are not clear.In view of this problem,a single die hole compression molding test device was designed in this study,and the force of material in a mold hole was analyzed.Using the test device,a three-factor three-level orthogonal test was carried out by using the particle size,moisture content,and die hole length-to-diameter ratio of pineapple rind residue as the factors and the particle molding rate,relax density,and specific energy consumption as the indicators.The test results were analyzed by range analysis,variance analysis,and fuzzy comprehensive evaluation.The test results show that the main and secondary factors affecting the comprehensive performance of pineapple rind residue compression molding are length-to-diameter ratio,particle size,and moisture content.The optimal parameter combination is the material particle size of 6-9 mm,moisture content of 16%,and length-to-diameter ratio of 4:1.The best indicators under these conditions are particle molding rate of 97.80%,relax density of 1.32 g/cm,and specific energy consumption of 44.17 J/g.These research results can provide a reference for the selection of processing parameters and the design of molding equipment.