In this paper, we study the propagation and its failure to propagate (pinning) of a travelling wave in a Nagumo type equation, an equation that describes impulse propagation in nerve axons that also models population ...In this paper, we study the propagation and its failure to propagate (pinning) of a travelling wave in a Nagumo type equation, an equation that describes impulse propagation in nerve axons that also models population growth with Allee effect. An analytical solution is derived for the traveling wave and the work is extended to a discrete formulation with a piecewise linear reaction function. We propose an operator splitting numerical scheme to solve the equation and demonstrate that the wave either propagates or gets pinned based on how the spatial mesh is chosen.展开更多
With the emergence of new materials for high-efficiency organic solar cells(OSCs),understanding and finetuning the interface energetics become increasingly important.Precise determination of the so-called pinning ener...With the emergence of new materials for high-efficiency organic solar cells(OSCs),understanding and finetuning the interface energetics become increasingly important.Precise determination of the so-called pinning energies,one of the critical characteristics of the material to predict the energy level alignment(ELA)at either electrode/organic or organic/organic interfaces,are urgently needed for the new materials.Here,pinning energies of a wide variety of newly developed donors and nonfullerene acceptors(NFAs)are measured through ultraviolet photoelectron spectroscopy.The positive pinning energies of the studied donors and the negative pinning energies of NFAs are in the same energy range of 4.3−4.6 eV,which follows the design rules developed for fullerene-based OSCs.The ELA for metal/organic and inorganic/organic interfaces follows the predicted behavior for all of the materials studied.For organic-organic heterojunctions where both the donor and the NFA feature strong intramolecular charge transfer,the pinning energies often underestimate the experimentally obtained interface vacuum level shift,which has consequences for OSC device performance.展开更多
Research of vortex properties in type-Ⅱsuperconductors is of great importance for potential applications and fundamental physics.Here,we present a comprehensive study of the critical current density Jc,vortex pinning...Research of vortex properties in type-Ⅱsuperconductors is of great importance for potential applications and fundamental physics.Here,we present a comprehensive study of the critical current density Jc,vortex pinning,and phase diagram of Na Cl-type In Te_(1-x)Se_(x)(x=0,0.1,0.2)superconductors synthesized by high-pressure technique.Our studies reveal that the values of Jc calculated by the Bean model exceed 10^(4)A/cm^(2)in the In Te_(1-x)Se_(x)system,signifying good potential for applications.The magnetic hysteresis loops(MHLs)show an asymmetric characteristic at various degrees,which is associated with the surface barrier.Intriguingly,a rare phenomenon in which the second magnetization peak in the MHLs occurs only in the field-descending branch is detected in In Te_(0.9)Se_(0.1).Such an anomalous behavior has not been observed before and can be described by considering the respective roles of the surface barrier and bulk pinning in the field-ascending and field-descending branches.By analyzing the pinning force density versus reduced field,the pinning mechanisms are studied in detail in the framework of the Dew-Hughes model.Finally,combining the results of resistivity and magnetization measurements,the vortex phase diagrams are constructed and discussed.展开更多
Multicomponent superconductors exhibit nontrivial vortex behaviors due to the various vortex–vortex interactions,including the competing one in the recently proposed type-1.5 superconductor.However,potential candidat...Multicomponent superconductors exhibit nontrivial vortex behaviors due to the various vortex–vortex interactions,including the competing one in the recently proposed type-1.5 superconductor.However,potential candidate that can be used to study the multicomponent superconductivity is rare.Here,we prepared an artificial superconducting multilayer to act as an alternative approach to study multicomponent superconductivity.The additional repulsive length and the coupling strength among superconducting films were regulated by changing the thickness of the insulting layer.The magnetization measurements were performed to clarify the effect of the competition between the repulsive vortex interactions on the macroscopic superconductivity.The vortex phase diagram and the optimum critical current density have been determined.Furthermore,a second magnetization effect is observed,and is attributed to the upper layer,which provides the weak pinning sites to localize the flux lines.The pinning behaviors switches to the mixed type with the increase of the insulting layer thicknesses.Our results open a new perspective to the study and related applications of the multilayer superconducting systems.展开更多
The stabilization properties of various typical complex dynamical networks composed of chaotic nodes are theoretically investigated and numerically simulated in detail. Some local stability properties of such pinned n...The stabilization properties of various typical complex dynamical networks composed of chaotic nodes are theoretically investigated and numerically simulated in detail. Some local stability properties of such pinned networks are derived and the valid stability regions are estimated based on eigenvalue analysis. Numerical simulations of such networks are given to explain why significantly less local controllers are needed by the specifically pinning scheme, which pins the most highly connected nodes in scale-free networks, than that required by the randomly pinning scheme. Also, it is explained why there is no significant difference between the two schemes for controlling random-graph networks and small-world networks.展开更多
Defect control at nanoscale of MgB2 by doping various nanoparticles including Ti, C, nano-diamond, and HOB4, and their roles played to enhance flux pinning force in MgB2 are compared and analyzed. These nanodopants ha...Defect control at nanoscale of MgB2 by doping various nanoparticles including Ti, C, nano-diamond, and HOB4, and their roles played to enhance flux pinning force in MgB2 are compared and analyzed. These nanodopants have different chemical and physical properties, thus bring about different pinning efficiency, especially nanodopants with strong magnetic moment are particularly interesting as pinning centers in MgB2 since magnetic impurities usually have a stronger interaction with magnetic flux line than nonmagnetic impurities and may exert a stronger force to trap the flux lines when they are properly introduced into the superconducting matrix.展开更多
This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different ...This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different agent clusters according to the community structure generated by the group partition of the underlying graph and sufficient conditions for both cluster and general consensus are obtained by using results from algebraic graph theory and the LaSalle Invariance Principle. Finally, some simple simulations are presented to illustrate the technique.展开更多
This paper studies pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions. To study a state-feedback pinning-controlled network with N nodes, it first converts the contro...This paper studies pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions. To study a state-feedback pinning-controlled network with N nodes, it first converts the controlled network to an extended network of N+1 nodes without controls. It is shown that the controlled synchronizability of the given network is determined by the real part of the smallest nonzero eigenvalue of the coupling matrix of its extended network when the synchronized region is unbounded; but it is determined by the ratio of the real parts of the largest and the smallest nonzero eigenvalues of the coupling matrix when the synchronized region is bounded. Both theoretical analysis and numerical simulation show that the portion of controlled nodes has no critical values when the synchronized region is unbounded, but it has a critical value when the synchronized region is bounded. In the former case, therefore, it is possible to control the network to achieve synchronization by pinning only one node. In the latter case, the network can achieve controlled synchronization only when the portion of controlled nodes is larger than the critical value.展开更多
In this article, we consider the global chaotic synchronization of general cou- pled neural networks, in which subsystems have both discrete and distributed delays. Stochastic perturbations between subsystems are also...In this article, we consider the global chaotic synchronization of general cou- pled neural networks, in which subsystems have both discrete and distributed delays. Stochastic perturbations between subsystems are also considered. On the basis of two sim- ple adaptive pinning feedback control schemes, Lyapunov functional method, and stochas- tic analysis approach, several sufficient conditions are developed to guarantee global syn- chronization of the coupled neural networks with two kinds of delay couplings, even if only partial states of the nodes are coupled. The outer-coupling matrices may be symmetric or asymmetric. Unlike existing results that an isolate node is introduced as the pinning target, we pin to help the network realizing synchronization without introducing any iso- late node when the network is not synchronized. As a by product, sufficient conditions under which the network realizes synchronization without control are derived. Numerical simulations confirm the effectiveness of the obtained results.展开更多
This paper concerns the disturbance rejection problem of a linear complex dynamical network subject to external disturbances. A dynamical network is said to be robust to disturbance, if the H∞ norm of its transfer fu...This paper concerns the disturbance rejection problem of a linear complex dynamical network subject to external disturbances. A dynamical network is said to be robust to disturbance, if the H∞ norm of its transfer function matrix from the disturbance to the performance variable is satisfactorily small. It is shown that the disturbance rejection problem of a dynamical network can be solved by analysing the H∞ control problem of a set of independent systems whose dimensions are equal to that of a single node. A counter-intuitive result is that the disturbance rejection level of the whole network with a diffusive coupling will never be better than that of an isolated node. To improve this, local feedback injections are applied to a small fraction of the nodes in the network. Some criteria for possible performance improvement are derived in terms of linear matrix inequalities. It is further demonstrated via a simulation example that one can indeed improve the disturbance rejection level of the network by pinning the nodes with higher degrees than pinning those with lower degrees.展开更多
The problem of pinning control for the synchronization of complex dynamical networks is discussed in this paper. A cost function of the controlled network is defined by the feedback gain and the coupling strength of t...The problem of pinning control for the synchronization of complex dynamical networks is discussed in this paper. A cost function of the controlled network is defined by the feedback gain and the coupling strength of the network. An interesting result is that a lower cost is achieved by using the control scheme of pinning nodes with smaller degrees. Some strict mathematical analyses are presented for achieving a lower cost in the synchronization of different star-shaped networks. Numerical simulations on some non-regular complex networks generated by the Barabasi-Albert model and various star-shaped networks are performed for verification and illustration.展开更多
We report the temperature, magnetic field and time dependences of magnetization in advanced Ba122 superconducting tapes. The sample exhibits peculiar vortex creep behavior. Below 10 K, the normalized magnetization rel...We report the temperature, magnetic field and time dependences of magnetization in advanced Ba122 superconducting tapes. The sample exhibits peculiar vortex creep behavior. Below 10 K, the normalized magnetization relaxation rate S = d ln(-M)/d ln(t) shows a temperature-insensitive plateau with a value comparable to that of low-temperature superconductors, which can be explained within the framework of collective creep theory. It then enters into a second collective creep regime when the temperature increases. Interestingly, the relaxation rate below 20 K tends to reach saturation with increasing the field. However, it changes to a power law dependence on the field at a higher temperature. A vortex phase diagram composed of the collective and the plastic creep regions is shown. Benefiting from the strong grain boundary pinning, the advanced Bal22 superconducting tape has potential to be applied not only in liquid helium but also in liquid hydrogen or at temperatures accessible with cryocoolers.展开更多
A systematic study on the structural, magnetic, and electrical transport properties was performed for the LaMnlxCUxO3 system. A single phase of orthorhornbic perovskite structure was formed for x = 0.05-0.40. A striki...A systematic study on the structural, magnetic, and electrical transport properties was performed for the LaMnlxCUxO3 system. A single phase of orthorhornbic perovskite structure was formed for x = 0.05-0.40. A striking paramagnetic-ferromagnetic transition and a considerable magnetoresistance effect were observed at the ferromagnetic ordering temperature Tc, but no insulator-metal transition induced by Cu-doping was observed. Below Tc, a visible unexpected drop was observed in the ac susceptibility and zero-field-cooled dc magnetization for the dilute doped samples with x≤0.10, which was proven to be associated with domain wall pinning effects by milling the bulk material into single domain particles. It is validated that there is no exchange interaction between Cu and Mn, and double exchange interactions between Mn^3+ and Mn^4+ are induced by Cu-doping in the anti-ferromagnetic LaMnO3 matrix, whereas the severe distortion and disorder caused by occupied-dopant prohibits charge carriers from hopping.展开更多
In this paper the pinning consensus of multi-agent networks with arbitrary topology is investigated. Based on the properties of M-matrix, some criteria of pinning consensus are established for the continuous multi-age...In this paper the pinning consensus of multi-agent networks with arbitrary topology is investigated. Based on the properties of M-matrix, some criteria of pinning consensus are established for the continuous multi-agent network and the results show that the pinning consensus of the dynamical system depends on the smallest real part of the eigenvalue of the matrix which is composed of the Laplacian matrix of the multi-agent network and the pinning control gains. Meanwhile, the relevant work for the discrete-time system is studied and the corresponding criterion is also obtained. Particularly, the fundamental problem of pinning consensus, that is, what kind of node should be pinned, is investigated and the positive answers to this question are presented. Finally, the correctness of our theoretical findings is demonstrated by some numerical simulated examples.展开更多
This paper investigates the local and global synchronization of a generalized complex dynamical network model with constant and delayed coupling. Without assuming symmetry of the couplings, we proved that a single con...This paper investigates the local and global synchronization of a generalized complex dynamical network model with constant and delayed coupling. Without assuming symmetry of the couplings, we proved that a single controller can pin the generalized complex network to a homogenous solution. Some previous synchronization results are generalized. In this paper, we first discuss how to pin an array of delayed neural networks to the synchronous solution by adding only one controller. Next, by using the Lyapunov functional method, some sufficient conditions are derived for the local and global synchronization of the coupled systems. The obtained results are expressed in terms of LMIs, which can be efficiently checked by the Matlab LMI toolbox. Finally, an example is given to illustrate the theoretical results.展开更多
In this paper, the pinning synchronization problem of stochastic delayed complex network (SDCN) is investigated by using a novel hybrid pinning controller. The proposed hybrid pinning controller is composed of adapt...In this paper, the pinning synchronization problem of stochastic delayed complex network (SDCN) is investigated by using a novel hybrid pinning controller. The proposed hybrid pinning controller is composed of adaptive controller and impulsive controller, where the two controllers are both added to a fraction of nodes in the network. Using the Lyapunov stability theory and the novel hybrid pinning controller, some sufficient conditions are derived for the exponential synchronization of such dynamical networks in mean square. Two numerical simulation examples are provided to verify the effectiveness of the proposed approach. The simulation results show that the proposed control scheme has a fast convergence rate compared with the conventional adaptive pinning method.展开更多
Using time-dependent Ginzburg-Landau formalism,we investigate the multiple reversals of ratchet effects in an unpatterned superconducting strip by the tilted dynamic pinning potential.In the case of collinear sliding ...Using time-dependent Ginzburg-Landau formalism,we investigate the multiple reversals of ratchet effects in an unpatterned superconducting strip by the tilted dynamic pinning potential.In the case of collinear sliding potential and Lorentz force,vortices are always confined in the channels induced by sliding potential.However,due to the inclination angle of sliding pinning potential with respect to the Lorentz force,vortices could be driven out of the channels,and unexpected results with multiple reversals of vortex rectifications are observed.The mechanism of multiple reversals of vortex rectifications is explored by analyzing different vortex motion scenarios with increasing ac current amplitudes.The multiple reversals of transverse and longitudinal ratchet effects can be highly controlled by ac amplitude and dynamic pinning velocity.What's more,at certain large current the ratchet effect reaches strongest within a wide range of pinning sliding velocity.展开更多
This paper deals with the pinning synchronization of nonlinearly coupled complex networks with time-varying coupling delays and time-varying delays in the dynamical nodes.We control a part of the nodes of the complex ...This paper deals with the pinning synchronization of nonlinearly coupled complex networks with time-varying coupling delays and time-varying delays in the dynamical nodes.We control a part of the nodes of the complex networks by using adaptive feedback controllers and adjusting the time-varying coupling strengths.Based on the Lyapunov-Krasovskii stability theory for functional differential equations and a linear matrix inequality(LMI),some sufficient conditions for the synchronization are derived.A numerical simulation example is also provided to verify the correctness and the effectiveness of the proposed scheme.展开更多
Low activation isotopic boron(11B)based magnesium diboride(Mg^(11)B_(2))superconductors doped with biomass-derived activated carbon were synthesized using11B and magnesium powder via solid-state reaction.The effect of...Low activation isotopic boron(11B)based magnesium diboride(Mg^(11)B_(2))superconductors doped with biomass-derived activated carbon were synthesized using11B and magnesium powder via solid-state reaction.The effect of carbon doping on the lattice structure and superconducting properties of Mg^(11)B_(2)bulks were evaluated using X-ray powder diffraction,high resolution transmission electron microscopy,scanning electron microscopy and magnetization measurements.Precise refinement of structural parameters indicates successful substitution of carbon in Mg^(11)B_(2)bulks.The critical current density(Jc)of carbon doped Mg^(11)B_(2)synthesized at 650℃was enhanced more than two times compared with the pure Mg^(11)B_(2)bulk.Similar improvement was observed for the Mg^(11)B_(2)bulks heat-treated at 800℃.This enhancement is due to successful substitution of biomass-derived carbon with high surface area into Mg^(11)B_(2)lattice.The flux pinning mechanism of pure and doped Mg^(11)B_(2)bulks were investigated using the Dew-Hughes model.This study provides information regarding enhancement of the Jc of low activation Mg^(11)B_(2)superconductors suitable for next-generation fusion magnets.展开更多
文摘In this paper, we study the propagation and its failure to propagate (pinning) of a travelling wave in a Nagumo type equation, an equation that describes impulse propagation in nerve axons that also models population growth with Allee effect. An analytical solution is derived for the traveling wave and the work is extended to a discrete formulation with a piecewise linear reaction function. We propose an operator splitting numerical scheme to solve the equation and demonstrate that the wave either propagates or gets pinned based on how the spatial mesh is chosen.
基金the financial support from the Swedish Research Council(project grants no.2016-05498,2016-05990,and 2020-04538)the Swedish Energy Agency(grant.no.45411-1)+1 种基金by the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University(Faculty Grant SFO Mat LiU no.200900971)support from the Wallenberg Wood Science Center(WWSC).
文摘With the emergence of new materials for high-efficiency organic solar cells(OSCs),understanding and finetuning the interface energetics become increasingly important.Precise determination of the so-called pinning energies,one of the critical characteristics of the material to predict the energy level alignment(ELA)at either electrode/organic or organic/organic interfaces,are urgently needed for the new materials.Here,pinning energies of a wide variety of newly developed donors and nonfullerene acceptors(NFAs)are measured through ultraviolet photoelectron spectroscopy.The positive pinning energies of the studied donors and the negative pinning energies of NFAs are in the same energy range of 4.3−4.6 eV,which follows the design rules developed for fullerene-based OSCs.The ELA for metal/organic and inorganic/organic interfaces follows the predicted behavior for all of the materials studied.For organic-organic heterojunctions where both the donor and the NFA feature strong intramolecular charge transfer,the pinning energies often underestimate the experimentally obtained interface vacuum level shift,which has consequences for OSC device performance.
基金the National Natural Science Foundation of China(Grant Nos.12204265 and 12204487)the Natural Science Foundation of Shandong Province(Grant Nos.ZR2022QA040,2022KJ183,and 2019KJJ020)+1 种基金the National Key R&D Program of China(Grant No.2018YFA0704300)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB25000000)。
文摘Research of vortex properties in type-Ⅱsuperconductors is of great importance for potential applications and fundamental physics.Here,we present a comprehensive study of the critical current density Jc,vortex pinning,and phase diagram of Na Cl-type In Te_(1-x)Se_(x)(x=0,0.1,0.2)superconductors synthesized by high-pressure technique.Our studies reveal that the values of Jc calculated by the Bean model exceed 10^(4)A/cm^(2)in the In Te_(1-x)Se_(x)system,signifying good potential for applications.The magnetic hysteresis loops(MHLs)show an asymmetric characteristic at various degrees,which is associated with the surface barrier.Intriguingly,a rare phenomenon in which the second magnetization peak in the MHLs occurs only in the field-descending branch is detected in In Te_(0.9)Se_(0.1).Such an anomalous behavior has not been observed before and can be described by considering the respective roles of the surface barrier and bulk pinning in the field-ascending and field-descending branches.By analyzing the pinning force density versus reduced field,the pinning mechanisms are studied in detail in the framework of the Dew-Hughes model.Finally,combining the results of resistivity and magnetization measurements,the vortex phase diagrams are constructed and discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12174242)the National Key Research and Development Program of China (Grant No. 2018YFA0704300)+1 种基金the Key Research Project of Zhejiang Laboratory (Grant No. 2021PE0AC02)the support by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning
文摘Multicomponent superconductors exhibit nontrivial vortex behaviors due to the various vortex–vortex interactions,including the competing one in the recently proposed type-1.5 superconductor.However,potential candidate that can be used to study the multicomponent superconductivity is rare.Here,we prepared an artificial superconducting multilayer to act as an alternative approach to study multicomponent superconductivity.The additional repulsive length and the coupling strength among superconducting films were regulated by changing the thickness of the insulting layer.The magnetization measurements were performed to clarify the effect of the competition between the repulsive vortex interactions on the macroscopic superconductivity.The vortex phase diagram and the optimum critical current density have been determined.Furthermore,a second magnetization effect is observed,and is attributed to the upper layer,which provides the weak pinning sites to localize the flux lines.The pinning behaviors switches to the mixed type with the increase of the insulting layer thicknesses.Our results open a new perspective to the study and related applications of the multilayer superconducting systems.
基金the National Natural Science Foundation of China (No.60774088, 60504017)the Specialized Research Fund for theDoctoral Program of Higher Education of China (No.20050055013)the Program for New Century Excellent Talents of China (NCET)
文摘The stabilization properties of various typical complex dynamical networks composed of chaotic nodes are theoretically investigated and numerically simulated in detail. Some local stability properties of such pinned networks are derived and the valid stability regions are estimated based on eigenvalue analysis. Numerical simulations of such networks are given to explain why significantly less local controllers are needed by the specifically pinning scheme, which pins the most highly connected nodes in scale-free networks, than that required by the randomly pinning scheme. Also, it is explained why there is no significant difference between the two schemes for controlling random-graph networks and small-world networks.
基金supported Australian Research Council (Nos. DP0559872 and DP0881739)
文摘Defect control at nanoscale of MgB2 by doping various nanoparticles including Ti, C, nano-diamond, and HOB4, and their roles played to enhance flux pinning force in MgB2 are compared and analyzed. These nanodopants have different chemical and physical properties, thus bring about different pinning efficiency, especially nanodopants with strong magnetic moment are particularly interesting as pinning centers in MgB2 since magnetic impurities usually have a stronger interaction with magnetic flux line than nonmagnetic impurities and may exert a stronger force to trap the flux lines when they are properly introduced into the superconducting matrix.
基金Project supported by the National Natural Science Foundation of China (Grant No. 70571059)
文摘This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different agent clusters according to the community structure generated by the group partition of the underlying graph and sufficient conditions for both cluster and general consensus are obtained by using results from algebraic graph theory and the LaSalle Invariance Principle. Finally, some simple simulations are presented to illustrate the technique.
基金supported by the National Natural Science Foundation of China (Grant No 10647001)the Guangxi Natural Science Foundation (Grant No 0728042)+1 种基金the Program for Excellent Talents in Guangxi Higher Education Institutions (Grant No RC2007006)the NSFC-HK Joint Research Scheme (Grant No N-CityU107/07)
文摘This paper studies pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions. To study a state-feedback pinning-controlled network with N nodes, it first converts the controlled network to an extended network of N+1 nodes without controls. It is shown that the controlled synchronizability of the given network is determined by the real part of the smallest nonzero eigenvalue of the coupling matrix of its extended network when the synchronized region is unbounded; but it is determined by the ratio of the real parts of the largest and the smallest nonzero eigenvalues of the coupling matrix when the synchronized region is bounded. Both theoretical analysis and numerical simulation show that the portion of controlled nodes has no critical values when the synchronized region is unbounded, but it has a critical value when the synchronized region is bounded. In the former case, therefore, it is possible to control the network to achieve synchronization by pinning only one node. In the latter case, the network can achieve controlled synchronization only when the portion of controlled nodes is larger than the critical value.
基金supported by the National Natural Science Foundation of China under Grant No. 60874088 and No. 11072059the Scientific Research Fund of Yunnan Province under Grant No. 2010ZC150the Scientific Research Fund of Yunnan Provincial Education Department under Grant No. 07Y10085
文摘In this article, we consider the global chaotic synchronization of general cou- pled neural networks, in which subsystems have both discrete and distributed delays. Stochastic perturbations between subsystems are also considered. On the basis of two sim- ple adaptive pinning feedback control schemes, Lyapunov functional method, and stochas- tic analysis approach, several sufficient conditions are developed to guarantee global syn- chronization of the coupled neural networks with two kinds of delay couplings, even if only partial states of the nodes are coupled. The outer-coupling matrices may be symmetric or asymmetric. Unlike existing results that an isolate node is introduced as the pinning target, we pin to help the network realizing synchronization without introducing any iso- late node when the network is not synchronized. As a by product, sufficient conditions under which the network realizes synchronization without control are derived. Numerical simulations confirm the effectiveness of the obtained results.
基金Project supported by the National Natural Science Foundation of China (Grant No 10832006)the Key Projects of Educational Ministry of China (Grant No 107110)
文摘This paper concerns the disturbance rejection problem of a linear complex dynamical network subject to external disturbances. A dynamical network is said to be robust to disturbance, if the H∞ norm of its transfer function matrix from the disturbance to the performance variable is satisfactorily small. It is shown that the disturbance rejection problem of a dynamical network can be solved by analysing the H∞ control problem of a set of independent systems whose dimensions are equal to that of a single node. A counter-intuitive result is that the disturbance rejection level of the whole network with a diffusive coupling will never be better than that of an isolated node. To improve this, local feedback injections are applied to a small fraction of the nodes in the network. Some criteria for possible performance improvement are derived in terms of linear matrix inequalities. It is further demonstrated via a simulation example that one can indeed improve the disturbance rejection level of the network by pinning the nodes with higher degrees than pinning those with lower degrees.
基金Project supported by the National Natural Science Foundation of China (Grant No 60674093)the Foundation for Key Program of Ministry of Education,China (Grant No 107110)
文摘The problem of pinning control for the synchronization of complex dynamical networks is discussed in this paper. A cost function of the controlled network is defined by the feedback gain and the coupling strength of the network. An interesting result is that a lower cost is achieved by using the control scheme of pinning nodes with smaller degrees. Some strict mathematical analyses are presented for achieving a lower cost in the synchronization of different star-shaped networks. Numerical simulations on some non-regular complex networks generated by the Barabasi-Albert model and various star-shaped networks are performed for verification and illustration.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51402292 and 51677179the International Partnership Program of the Chinese Academy of Sciences under Grant Nos GJHZ1775 and 182111KYSB20160014+1 种基金the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences under Grant No NoQYZDJ-SSW-JSC026the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB25000000
文摘We report the temperature, magnetic field and time dependences of magnetization in advanced Ba122 superconducting tapes. The sample exhibits peculiar vortex creep behavior. Below 10 K, the normalized magnetization relaxation rate S = d ln(-M)/d ln(t) shows a temperature-insensitive plateau with a value comparable to that of low-temperature superconductors, which can be explained within the framework of collective creep theory. It then enters into a second collective creep regime when the temperature increases. Interestingly, the relaxation rate below 20 K tends to reach saturation with increasing the field. However, it changes to a power law dependence on the field at a higher temperature. A vortex phase diagram composed of the collective and the plastic creep regions is shown. Benefiting from the strong grain boundary pinning, the advanced Bal22 superconducting tape has potential to be applied not only in liquid helium but also in liquid hydrogen or at temperatures accessible with cryocoolers.
基金supported by Shanghai Rising-Star Program (No. 11QH1401000)the National Natural Science Foundation of China (No. 50932003)+1 种基金the Key Project of Chinese Ministry of Education (No. 211055)Shanghai Research Special Fund for Outstanding Young Teachers (No. sdl10009)
文摘A systematic study on the structural, magnetic, and electrical transport properties was performed for the LaMnlxCUxO3 system. A single phase of orthorhornbic perovskite structure was formed for x = 0.05-0.40. A striking paramagnetic-ferromagnetic transition and a considerable magnetoresistance effect were observed at the ferromagnetic ordering temperature Tc, but no insulator-metal transition induced by Cu-doping was observed. Below Tc, a visible unexpected drop was observed in the ac susceptibility and zero-field-cooled dc magnetization for the dilute doped samples with x≤0.10, which was proven to be associated with domain wall pinning effects by milling the bulk material into single domain particles. It is validated that there is no exchange interaction between Cu and Mn, and double exchange interactions between Mn^3+ and Mn^4+ are induced by Cu-doping in the anti-ferromagnetic LaMnO3 matrix, whereas the severe distortion and disorder caused by occupied-dopant prohibits charge carriers from hopping.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60973114 and 61170249)the Natural Science Foundation of Chongqing Science and Technology Commission, China (Grant Nos. 2009BA2024, cstc2011jjA40045, and cstc2013jcyjA0906)the State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, China (Grant No. 2007DA10512711206)
文摘In this paper the pinning consensus of multi-agent networks with arbitrary topology is investigated. Based on the properties of M-matrix, some criteria of pinning consensus are established for the continuous multi-agent network and the results show that the pinning consensus of the dynamical system depends on the smallest real part of the eigenvalue of the matrix which is composed of the Laplacian matrix of the multi-agent network and the pinning control gains. Meanwhile, the relevant work for the discrete-time system is studied and the corresponding criterion is also obtained. Particularly, the fundamental problem of pinning consensus, that is, what kind of node should be pinned, is investigated and the positive answers to this question are presented. Finally, the correctness of our theoretical findings is demonstrated by some numerical simulated examples.
基金supported by the National Natural Science Foundation of China (No.60674092)High-tech R & D Program of Jiangsu (Industry)(No.BG2006010)
文摘This paper investigates the local and global synchronization of a generalized complex dynamical network model with constant and delayed coupling. Without assuming symmetry of the couplings, we proved that a single controller can pin the generalized complex network to a homogenous solution. Some previous synchronization results are generalized. In this paper, we first discuss how to pin an array of delayed neural networks to the synchronous solution by adding only one controller. Next, by using the Lyapunov functional method, some sufficient conditions are derived for the local and global synchronization of the coupled systems. The obtained results are expressed in terms of LMIs, which can be efficiently checked by the Matlab LMI toolbox. Finally, an example is given to illustrate the theoretical results.
基金supported by the National Natural Science Foundation of China (Grant No. 60874113)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200802550007)+3 种基金the Key Foundation Project of Shanghai,China(Grant No. 09JC1400700)the Key Creative Project of Shanghai Education Community,China (Grant No. 09ZZ66)the National Basic Research Development Program of China (Grant No. 2010CB731400)the Research Grants Council of the Hong Kong Special Administrative Region,China (Grant No. PolyU 5212/07E)
文摘In this paper, the pinning synchronization problem of stochastic delayed complex network (SDCN) is investigated by using a novel hybrid pinning controller. The proposed hybrid pinning controller is composed of adaptive controller and impulsive controller, where the two controllers are both added to a fraction of nodes in the network. Using the Lyapunov stability theory and the novel hybrid pinning controller, some sufficient conditions are derived for the exponential synchronization of such dynamical networks in mean square. Two numerical simulation examples are provided to verify the effectiveness of the proposed approach. The simulation results show that the proposed control scheme has a fast convergence rate compared with the conventional adaptive pinning method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11702034,11972298,and 11702218)the China Postdoctoral Science Foundation(Grant No.2019M663812)+1 种基金the Fundamental Research Funds for the Central Universities,China(Grant Nos.300102129104,3102018zy013,and 3102017jc01003)the Young Talent Fund of University Association for Science and Technology in Shaanxi,China(Grant Nos.20180503 and 20180501).
文摘Using time-dependent Ginzburg-Landau formalism,we investigate the multiple reversals of ratchet effects in an unpatterned superconducting strip by the tilted dynamic pinning potential.In the case of collinear sliding potential and Lorentz force,vortices are always confined in the channels induced by sliding potential.However,due to the inclination angle of sliding pinning potential with respect to the Lorentz force,vortices could be driven out of the channels,and unexpected results with multiple reversals of vortex rectifications are observed.The mechanism of multiple reversals of vortex rectifications is explored by analyzing different vortex motion scenarios with increasing ac current amplitudes.The multiple reversals of transverse and longitudinal ratchet effects can be highly controlled by ac amplitude and dynamic pinning velocity.What's more,at certain large current the ratchet effect reaches strongest within a wide range of pinning sliding velocity.
基金Project supported by the National Natural Science Foundation of China (Grant No. 70871056)the Six Talents Peak Foundation of Jiangsu Province,China (Grant No. 2010-JY70-025)
文摘This paper deals with the pinning synchronization of nonlinearly coupled complex networks with time-varying coupling delays and time-varying delays in the dynamical nodes.We control a part of the nodes of the complex networks by using adaptive feedback controllers and adjusting the time-varying coupling strengths.Based on the Lyapunov-Krasovskii stability theory for functional differential equations and a linear matrix inequality(LMI),some sufficient conditions for the synchronization are derived.A numerical simulation example is also provided to verify the correctness and the effectiveness of the proposed scheme.
基金the Queensland Government for Advance Queensland Research Fellowship in partnership with Siemens Energy(Aust)Pty Ltd and QUT which partially supported this workby the Australian Research Council,Australia(Grant No.LP160101784)。
文摘Low activation isotopic boron(11B)based magnesium diboride(Mg^(11)B_(2))superconductors doped with biomass-derived activated carbon were synthesized using11B and magnesium powder via solid-state reaction.The effect of carbon doping on the lattice structure and superconducting properties of Mg^(11)B_(2)bulks were evaluated using X-ray powder diffraction,high resolution transmission electron microscopy,scanning electron microscopy and magnetization measurements.Precise refinement of structural parameters indicates successful substitution of carbon in Mg^(11)B_(2)bulks.The critical current density(Jc)of carbon doped Mg^(11)B_(2)synthesized at 650℃was enhanced more than two times compared with the pure Mg^(11)B_(2)bulk.Similar improvement was observed for the Mg^(11)B_(2)bulks heat-treated at 800℃.This enhancement is due to successful substitution of biomass-derived carbon with high surface area into Mg^(11)B_(2)lattice.The flux pinning mechanism of pure and doped Mg^(11)B_(2)bulks were investigated using the Dew-Hughes model.This study provides information regarding enhancement of the Jc of low activation Mg^(11)B_(2)superconductors suitable for next-generation fusion magnets.