In this study,the nonplanar post-buckling behavior of a simply supported fluid-conveying pipe with an axially sliding downstream end is investigated within the framework of a three-dimensional(3 D)theoretical model.Th...In this study,the nonplanar post-buckling behavior of a simply supported fluid-conveying pipe with an axially sliding downstream end is investigated within the framework of a three-dimensional(3 D)theoretical model.The complete nonlinear governing equations are discretized via Galerkin’s method and then numerically solved by the use of a fourth-order Runge-Kutta integration algorithm.Different initial conditions are chosen for calculations to show the nonplanar buckling characteristics of the pipe in two perpendicular lateral directions.A detailed parametric analysis is performed in order to study the influence of several key system parameters such as the mass ratio,the flow velocity,and the gravity parameter on the post-buckling behavior of the pipe.Typical results are presented in the form of bifurcation diagrams when the flow velocity is selected as the variable parameter.It is found that the pipe will stay at its original straight equilibrium position until the critical flow velocity is reached.Just beyond the critical flow velocity,the pipe would lose stability by static divergence via a pitchfork bifurcation,and two possible nonzero equilibrium positions are generated.It is shown that the buckling and post-buckling behaviors of the pipe cannot be influenced by the mass ratio parameter.Unlike a pipe with two immovable ends,however,the pinned-pinned pipe with an axially sliding downstream end shows some different features regarding post-buckling behaviors.The most important feature is that the buckling amplitude of the pipe with an axially sliding downstream end would increase first and then decrease with the increase in the flow velocity.In addition,the buckled shapes of the pipe varying with the flow velocity are displayed in order to further show the new post-buckling features of the pipe with an axially sliding downstream end.展开更多
During the installation of a pipe pile,the soil around the pile will be squeezed out. This paper deals with this squeezing effect of open-ended pipe piles using the cylindrical cavity expansion theory. The characteris...During the installation of a pipe pile,the soil around the pile will be squeezed out. This paper deals with this squeezing effect of open-ended pipe piles using the cylindrical cavity expansion theory. The characteristics of soil with different tension and compression moduli and dilation are involved by applying the elastic theory with different moduli and logarithmic strain. The closed-form solutions of the radius of the plastic region,the displacement of the boundary between the plastic region and the elastic region and the expansion pressure on the external surface of the pipe piles are obtained. When obtaining these solutions,the soil plug in the open-ended pipe pile is considered by employing an incremental filling ratio to quantify the degree of soil plugging. Moreover,the effects of the ratio of tension and compression moduli,angle of dilation and incremental filling ratio on the radius of the plastic region and the expansion pressure on the external surface of the pipe pile are investigated. The parametric analyses show that it is necessary and important to consider the difference between the tension modulus and compression modulus,dilation angle and incremental filling ratio for studying the squeezing effect of open-ended pipe pile installation. It is concluded that the analytical solutions presented in this paper are suitable for studying the squeezing effect of open-ended pipe piles.展开更多
Volatile organic compounds (VOCs) are an atmospheric pollutant with a boiling point of 50˚C - 260˚C at room temperature and pressure. They are precursors of sulfur dioxide and ozone, which can seriously pollute the at...Volatile organic compounds (VOCs) are an atmospheric pollutant with a boiling point of 50˚C - 260˚C at room temperature and pressure. They are precursors of sulfur dioxide and ozone, which can seriously pollute the atmosphere and endanger human health. After the “14th Five-Year Plan”, VOCs, instead of SO2, became one of the five indicators of China’s atmospheric governance. As a result, the government’s efforts to control VOCs have increased significantly. VOCs governance mustn’t be delayed. This paper provides a comprehensive summary and analysis of VOCs governance, covering the classification of VOCs, analysis of VOC governance technology (with a focus on end-of-pipe governance technology), national policy regulations, current governance shortcomings, and a forward-looking perspective on the future direction of VOCs governance, emphasizing healthy and sustainable development.展开更多
Static cracking agent(SCA)is actively investigated as an alternative to explosive blasting for rock breakage due to its immense expansion property.SCA can eliminate the negative effects of shock,noise and harmful gase...Static cracking agent(SCA)is actively investigated as an alternative to explosive blasting for rock breakage due to its immense expansion property.SCA can eliminate the negative effects of shock,noise and harmful gases encountered in explosive blasting processes.Accurate measurement and deep understanding of the expansive properties of SCAs are important in their industrial application.An improved outer pipe method(OPM),termed the upper end surface method(UESM),is proposed in this paper to overcome the shortcomings of the OPM in the expansive pressure measurement of SCAs.Numerical simulation is used to proof the concept and a mathematical model established to relate the internal pressure and the radial strains at different positions in the upper end surface method test equipment.The new equipment is calibrated using oil pressure and strain measurements.The calibrated equipment is then used to measure the expansion pressure of SCA at three different water contents to proof its potential.The differences in the measurements with OPM and UESM at three different moisture contents are less than 4%.The experimental results confirm the accuracy and applicability of the more user friendly and less expensive UESM in the measurement of the expansive pressures of SCAs.展开更多
In the framework of finite deformation theory, the burst failure analysis of end-opened defect-free pipes with plastic anisotropy under internal pressure is carried out. The analytical solutions of burst pressure and ...In the framework of finite deformation theory, the burst failure analysis of end-opened defect-free pipes with plastic anisotropy under internal pressure is carried out. The analytical solutions of burst pressure and the corresponding equivalent stress and strain are obtained for thin-walled pipes, which can take into account the effects of material plastic anisotropy and strain hardening exponent. The influences of plastic anisotropy on the burst pressure and the corresponding equivalent stress and strain are discussed. It is shown that the burst pressure and the corresponding equivalent stress and strain are dependent upon the plastic anisotropy of material, and the degree of dependence is related to the strain hardening exponent of material. In addition, the effects of the strain hardening exponent on burst failure are investigated.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11622216,11602090,and 11672115)the Natural Science Foundation of Hubei Province(No.2017CFB429)the fundamental Research Funds for the Central Universities of China(No.2017KFYXJJ135)
文摘In this study,the nonplanar post-buckling behavior of a simply supported fluid-conveying pipe with an axially sliding downstream end is investigated within the framework of a three-dimensional(3 D)theoretical model.The complete nonlinear governing equations are discretized via Galerkin’s method and then numerically solved by the use of a fourth-order Runge-Kutta integration algorithm.Different initial conditions are chosen for calculations to show the nonplanar buckling characteristics of the pipe in two perpendicular lateral directions.A detailed parametric analysis is performed in order to study the influence of several key system parameters such as the mass ratio,the flow velocity,and the gravity parameter on the post-buckling behavior of the pipe.Typical results are presented in the form of bifurcation diagrams when the flow velocity is selected as the variable parameter.It is found that the pipe will stay at its original straight equilibrium position until the critical flow velocity is reached.Just beyond the critical flow velocity,the pipe would lose stability by static divergence via a pitchfork bifurcation,and two possible nonzero equilibrium positions are generated.It is shown that the buckling and post-buckling behaviors of the pipe cannot be influenced by the mass ratio parameter.Unlike a pipe with two immovable ends,however,the pinned-pinned pipe with an axially sliding downstream end shows some different features regarding post-buckling behaviors.The most important feature is that the buckling amplitude of the pipe with an axially sliding downstream end would increase first and then decrease with the increase in the flow velocity.In addition,the buckled shapes of the pipe varying with the flow velocity are displayed in order to further show the new post-buckling features of the pipe with an axially sliding downstream end.
文摘During the installation of a pipe pile,the soil around the pile will be squeezed out. This paper deals with this squeezing effect of open-ended pipe piles using the cylindrical cavity expansion theory. The characteristics of soil with different tension and compression moduli and dilation are involved by applying the elastic theory with different moduli and logarithmic strain. The closed-form solutions of the radius of the plastic region,the displacement of the boundary between the plastic region and the elastic region and the expansion pressure on the external surface of the pipe piles are obtained. When obtaining these solutions,the soil plug in the open-ended pipe pile is considered by employing an incremental filling ratio to quantify the degree of soil plugging. Moreover,the effects of the ratio of tension and compression moduli,angle of dilation and incremental filling ratio on the radius of the plastic region and the expansion pressure on the external surface of the pipe pile are investigated. The parametric analyses show that it is necessary and important to consider the difference between the tension modulus and compression modulus,dilation angle and incremental filling ratio for studying the squeezing effect of open-ended pipe pile installation. It is concluded that the analytical solutions presented in this paper are suitable for studying the squeezing effect of open-ended pipe piles.
文摘Volatile organic compounds (VOCs) are an atmospheric pollutant with a boiling point of 50˚C - 260˚C at room temperature and pressure. They are precursors of sulfur dioxide and ozone, which can seriously pollute the atmosphere and endanger human health. After the “14th Five-Year Plan”, VOCs, instead of SO2, became one of the five indicators of China’s atmospheric governance. As a result, the government’s efforts to control VOCs have increased significantly. VOCs governance mustn’t be delayed. This paper provides a comprehensive summary and analysis of VOCs governance, covering the classification of VOCs, analysis of VOC governance technology (with a focus on end-of-pipe governance technology), national policy regulations, current governance shortcomings, and a forward-looking perspective on the future direction of VOCs governance, emphasizing healthy and sustainable development.
基金funded by the State Key Research Development Program of China(No.2018YFC0604400)the National Science Foundation of China(Nos.51874068,52074062)+2 种基金the Fundamental Research Funds for the Central Universities(Nos.N2001003,N160107001,N180701016,N182608003,N2001001)the 111 Project(No.B17009)The authors also acknowledge Nazarbayev University for funding the research through its Collaborative Research Program(No.OPCRP2020014).
文摘Static cracking agent(SCA)is actively investigated as an alternative to explosive blasting for rock breakage due to its immense expansion property.SCA can eliminate the negative effects of shock,noise and harmful gases encountered in explosive blasting processes.Accurate measurement and deep understanding of the expansive properties of SCAs are important in their industrial application.An improved outer pipe method(OPM),termed the upper end surface method(UESM),is proposed in this paper to overcome the shortcomings of the OPM in the expansive pressure measurement of SCAs.Numerical simulation is used to proof the concept and a mathematical model established to relate the internal pressure and the radial strains at different positions in the upper end surface method test equipment.The new equipment is calibrated using oil pressure and strain measurements.The calibrated equipment is then used to measure the expansion pressure of SCA at three different water contents to proof its potential.The differences in the measurements with OPM and UESM at three different moisture contents are less than 4%.The experimental results confirm the accuracy and applicability of the more user friendly and less expensive UESM in the measurement of the expansive pressures of SCAs.
文摘In the framework of finite deformation theory, the burst failure analysis of end-opened defect-free pipes with plastic anisotropy under internal pressure is carried out. The analytical solutions of burst pressure and the corresponding equivalent stress and strain are obtained for thin-walled pipes, which can take into account the effects of material plastic anisotropy and strain hardening exponent. The influences of plastic anisotropy on the burst pressure and the corresponding equivalent stress and strain are discussed. It is shown that the burst pressure and the corresponding equivalent stress and strain are dependent upon the plastic anisotropy of material, and the degree of dependence is related to the strain hardening exponent of material. In addition, the effects of the strain hardening exponent on burst failure are investigated.