Separate type heat pipe heat exchangers are often used for large-scale heat exchanging. The arrangement of such a heat exchanger conveniently allows heat input to and output from the heat exchanger at remote locations...Separate type heat pipe heat exchangers are often used for large-scale heat exchanging. The arrangement of such a heat exchanger conveniently allows heat input to and output from the heat exchanger at remote locations. The traditional method of designing an ordinary HPHE (heat pipe heat exchanger) is commonly applied in the separate type exchanger design, but the calculations have to be carried out separately, which makes it very complicated. In this work, the ε-NTU (effectiveness-Number of Transfer Units) method was applied for optimization analysis of single- or multi-level separate type heat pipe heat exchangers. An optimizing formula for single-level separate type heat pipe heat exchangers was obtained. The optimizing principles of effec- tiveness-NTU and heat transfer rate by the equal distribution method for multi-level separate type heat pipe heat exchanger are presented. The design of separate type heat pipe heat exchangers by the optimizing method is more convenient and faster than by the traditional method.展开更多
A simple theoretical model of a heat pipe heat exchanger (HPHE) based on the ε-NTU method is presented. An iterative computer program was developed to predict the overall effectiveness of a counter-flow air-air loo...A simple theoretical model of a heat pipe heat exchanger (HPHE) based on the ε-NTU method is presented. An iterative computer program was developed to predict the overall effectiveness of a counter-flow air-air loop heat pipe heat exchanger (LHPHE). A thermal resistance network approach for a single thermosyphon was first considered to determine the overall heat transfer coefficients and the NTU's for the evaporator and condenser sections. The model incorporated previously determined evaporating and condensing coefficients. The overall effectiveness of the 6, 4 and 2 row LHPHE was then predicted. The theoretical overall effectiveness was compared with experimental data obtained from a R410a filled LHPHE. The experimental overall effectiveness results compared very well with the simulated values, The results showed that the 6 row arrangement performed better than the 4 or 2 row arrangement in the experiment.展开更多
In this paper,we take the mid-temperature gravity heat pipe exchanger as the research object,simulate the fluid flow field,temperature field and the working state of heat pipe in the heat exchanger by Fluent software....In this paper,we take the mid-temperature gravity heat pipe exchanger as the research object,simulate the fluid flow field,temperature field and the working state of heat pipe in the heat exchanger by Fluent software.The effects of different operating parameters and fin parameters on the heat transfer performance of heat exchangers are studied.The results show that the heat transfer performance of the mid-temperature gravity heat pipe exchanger is the best when the fin spacing is between 5 mm and 6 mm,the height of the heat pipe is between 12 mm and 13 mm,and the inlet velocity of the fluid is between 2.5 m/s to 3 m/s.展开更多
This research tests the effect of introducing turbulators of a new type into a circular tube heat exchanger under a constant and uniform longitudinal heatflux condition.A 45 mm diameter copper tube with a length of 1,3...This research tests the effect of introducing turbulators of a new type into a circular tube heat exchanger under a constant and uniform longitudinal heatflux condition.A 45 mm diameter copper tube with a length of 1,350 mm is utilized with a solid disk being inserted inside the tube,which consists of three sections,each one containing two slots.The slot is cut at a 45 degree angle toward the inner tube surface,which results in diverging theflow toward the inner hot tube surface in order to enhance the heat transfer process.Air is considered as the workingfluid with Prandtl number 0.71.The Reynolds number spans the interval from 6,000–13,500,which indicates that the consideredflow is turbulent.The heat exchanger performance is studied and analyzed in terms of average Nusselt number.The experimental results show that the Nusselt number value is directly proportional to the increase of the Reynolds number,and the number of turbulators inserts.With the use of three novel turbulators,the heat transfer was about 3.15 times higher than that in the smooth tube and the friction factor was about 1.11.展开更多
文摘Separate type heat pipe heat exchangers are often used for large-scale heat exchanging. The arrangement of such a heat exchanger conveniently allows heat input to and output from the heat exchanger at remote locations. The traditional method of designing an ordinary HPHE (heat pipe heat exchanger) is commonly applied in the separate type exchanger design, but the calculations have to be carried out separately, which makes it very complicated. In this work, the ε-NTU (effectiveness-Number of Transfer Units) method was applied for optimization analysis of single- or multi-level separate type heat pipe heat exchangers. An optimizing formula for single-level separate type heat pipe heat exchangers was obtained. The optimizing principles of effec- tiveness-NTU and heat transfer rate by the equal distribution method for multi-level separate type heat pipe heat exchanger are presented. The design of separate type heat pipe heat exchangers by the optimizing method is more convenient and faster than by the traditional method.
文摘A simple theoretical model of a heat pipe heat exchanger (HPHE) based on the ε-NTU method is presented. An iterative computer program was developed to predict the overall effectiveness of a counter-flow air-air loop heat pipe heat exchanger (LHPHE). A thermal resistance network approach for a single thermosyphon was first considered to determine the overall heat transfer coefficients and the NTU's for the evaporator and condenser sections. The model incorporated previously determined evaporating and condensing coefficients. The overall effectiveness of the 6, 4 and 2 row LHPHE was then predicted. The theoretical overall effectiveness was compared with experimental data obtained from a R410a filled LHPHE. The experimental overall effectiveness results compared very well with the simulated values, The results showed that the 6 row arrangement performed better than the 4 or 2 row arrangement in the experiment.
文摘In this paper,we take the mid-temperature gravity heat pipe exchanger as the research object,simulate the fluid flow field,temperature field and the working state of heat pipe in the heat exchanger by Fluent software.The effects of different operating parameters and fin parameters on the heat transfer performance of heat exchangers are studied.The results show that the heat transfer performance of the mid-temperature gravity heat pipe exchanger is the best when the fin spacing is between 5 mm and 6 mm,the height of the heat pipe is between 12 mm and 13 mm,and the inlet velocity of the fluid is between 2.5 m/s to 3 m/s.
文摘This research tests the effect of introducing turbulators of a new type into a circular tube heat exchanger under a constant and uniform longitudinal heatflux condition.A 45 mm diameter copper tube with a length of 1,350 mm is utilized with a solid disk being inserted inside the tube,which consists of three sections,each one containing two slots.The slot is cut at a 45 degree angle toward the inner tube surface,which results in diverging theflow toward the inner hot tube surface in order to enhance the heat transfer process.Air is considered as the workingfluid with Prandtl number 0.71.The Reynolds number spans the interval from 6,000–13,500,which indicates that the consideredflow is turbulent.The heat exchanger performance is studied and analyzed in terms of average Nusselt number.The experimental results show that the Nusselt number value is directly proportional to the increase of the Reynolds number,and the number of turbulators inserts.With the use of three novel turbulators,the heat transfer was about 3.15 times higher than that in the smooth tube and the friction factor was about 1.11.