With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply...With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply and drainage system pipe network to effectively save energy while providing residents with more accessible water resources.Therefore,the municipal water supply and drainage system and the water transmission methods should be designed according to the geographical conditions of the city.In this paper,we mainly analyze the design of municipal water supply and drainage systems and the selection of water transmission methods.Besides,the optimization of the water supply and drainage network zoning process and pipe network maintenance is also discussed,so as to provide a reference for municipal water supply and drainage work.展开更多
The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of t...The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of the carcass layer, an equivalent simplified model is used to study the mechanical properties of the carcass layer. However, the current equivalent carcass model only considers the elastic deformation, and this simplification leads to huge errors in the calculation results. In this study, radial compression experiments were carried out to make the carcasses to undergo plastic deformation. Subsequently, a residual neural network based on the experimental data was established to predict the load-displacement curves of carcasses with different inner diameter in plastic states under radial compression.The established neural network model’s high precision was verified by experimental data, and the influence of the number of input variables on the accuracy of the neural network was discussed. The conclusion shows that the residual neural network model established based on the experimental data of the small-diameter carcass layer can predict the load-displacement curve of the large-diameter carcass layer in the plastic stage. With the decrease of input data, the prediction accuracy of residual network model in plasticity stage will decrease.展开更多
Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile fac...Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events.展开更多
With a water-supply network by dynamic programming. The minimal as an example, the network was optimized annual discounted costs were taken as an objective function and node pressure etc. as constraint conditions. The...With a water-supply network by dynamic programming. The minimal as an example, the network was optimized annual discounted costs were taken as an objective function and node pressure etc. as constraint conditions. The alternative pipe diameters were optimized as per enumeration method and the group allowing objective function with the least values would be the optimized one. It is proved the optimized pipe network reduced by 11.49% in terms of cost and the optimized ben- efits proved much significant.展开更多
As for the factors affecting the heat transfer performance of complex and nonlinear oscillating heat pipe (OHP),grey relational analysis (GRA) was used to deal with the relationship between heat transfer rate of a loo...As for the factors affecting the heat transfer performance of complex and nonlinear oscillating heat pipe (OHP),grey relational analysis (GRA) was used to deal with the relationship between heat transfer rate of a looped copper-water OHP and charging ratio,inner diameter,inclination angel,heat input,number of turns,and the main influencing factors were defined.Then,forecasting model was obtained by using main influencing factors (such as charging ratio,interior diameter,and inclination angel) as the inputs of function chain neural network.The results show that the relative average error between the predicted and actual value is 4%,which illustrates that the function chain neural network can be applied to predict the performance of OHP accurately.展开更多
The optimal operation of water distribution networks under local pipe failures, such as water main breaks, was proposed. Based on a hydraulic analysis and a simulation of water distribution networks, a macroscopic mod...The optimal operation of water distribution networks under local pipe failures, such as water main breaks, was proposed. Based on a hydraulic analysis and a simulation of water distribution networks, a macroscopic model for a network under a local pipe failure was established by the statistical regression. After the operation objectives under a local pipe failure were determined, the optimal operation model was developed and solved by the genetic algorithm. The program was developed and examined by a city distribution network. The optimal operation alternative shows that the electricity cost is saved approximately 11%, the income of the water corporation is increased approximately 5%, and the pressure in the water distribution network is distributed evenly to ensure the network safe operation. Therefore, the proposed method for optimal operation under local pipe failure is feasible and cost-effective.展开更多
A new geometric modeling approach is introduced in this paper.First the principle of modeling of 3D pipe network is discussed in detail.Then the procedures of implementing pipe network visualization and system functio...A new geometric modeling approach is introduced in this paper.First the principle of modeling of 3D pipe network is discussed in detail.Then the procedures of implementing pipe network visualization and system functions are presented.Last,several efficient methods for speeding up display of graphics are introduced.The new geometric modeling approach offers to people a new way to solve 3D visualization of complex urban pipe network.展开更多
This paper analyzes conflict features in architecture pipe routing,and builds a pipe routing design conflict model by taking into account of discrete nominal internal diameter selection of pipes,material costs,and con...This paper analyzes conflict features in architecture pipe routing,and builds a pipe routing design conflict model by taking into account of discrete nominal internal diameter selection of pipes,material costs,and conflict solution sequence.Considering pipe routing as an assembling process,a conflict detection approach for pipe routing in collaborative architectural design is proposed based on an aforementioned model.Constraint network is used to describe the relationship among pipe routing design parameters and constraints;design conflicts are detected by matching designers' input and constraint network;and detected design conflicts are reordered according to the number of pipe parameters in conflicts.In order to support the collaborative requirement of pipe routing design,a prototype system using browser/server architecture is developed.An illustrative example of water pipe routing in a room is used to show the effectiveness and efficiency of the approach.展开更多
In this paper the dynamic characteristics in pipes are analyzed with frequency method, and puts forward a simple and practical describing method. By establishing the model library beforehand, the modeling of the pipe ...In this paper the dynamic characteristics in pipes are analyzed with frequency method, and puts forward a simple and practical describing method. By establishing the model library beforehand, the modeling of the pipe net is completed automatically, and we can accurately calculate the impedance characteristics of the pipe network, achieve the reasonable configuration of the pipe network, so that to decrease the pressure pulsation.展开更多
Thermal performance of a loop heat pipe with two evaporators and two condensers was examined using a lumped network model analysis. Thermosyphon-type vertical loop heat pipe and capillary-pump-type horizontal loop hea...Thermal performance of a loop heat pipe with two evaporators and two condensers was examined using a lumped network model analysis. Thermosyphon-type vertical loop heat pipe and capillary-pump-type horizontal loop heat pipe were calculated by examining the change of heating rate of two evaporators. Calculation results showed that the vapor and liquid flow rates in the loop heat pipe and the thermal conductance of the heat pipe changed significantly depending on the distribution ratio of the heating rate of the multiple evaporators. The thermal performance of the vertical loop heat pipe with two evaporators was also examined and experimental results of flow direction and thermal conductance of the heat pipe agreed with the analytical results. The lumped network model analysis is therefore considered accurate and preferable for the practical design of a loop heat pipe with multiple evaporators.展开更多
The potability of drinking water depends not only on the source and the treatment system, but also on the quality of the waterworks. In fact, the quality of drinking water is considerably degraded by the dilapidated s...The potability of drinking water depends not only on the source and the treatment system, but also on the quality of the waterworks. In fact, the quality of drinking water is considerably degraded by the dilapidated state and lack of maintenance of drinking water networks. In Côte d’Ivoire, the majority of drinking water networks in the various towns are ageing. In Daloa, despite the efforts made by the company in charge of water treatment and distribution to make the water drinkable, the water at consumers’ taps is often colored, has an unpleasant aftertaste and settles after collection. As a result, people are concerned about the potability of tap water, and some are turning to alternative sources of drinking water of unknown quality. In order to determine the factors responsible for the deterioration in water color and taste, as well as the sectors of the network most affected, a diagnosis of the network’s equipment was carried out. Water samples taken from the network were analyzed for color and turbidity. The diagnosis revealed that most of the equipment (suction pads, valves, drains and fire hydrants) is outdated and irregularly maintained. Analyses show that the water is more colored in cast-iron and PVC pipes than in asbestos cement pipes. Coloration values in the network range from 0 to 27 UVC for asbestos cement pipes, from 15 to 56 UCV for ductile iron pipes, and from 11 to 102 UCV for PVC pipes. On the over hand, turbidity values vary from 8.02 to 3.32 NTU for ductile cast iron pipes, 8.51 to 16.98 NTU for asbestos cement pipes and 0.9 to 6.98 NTU for PVC pipes. Old cast-iron pipes release ferric ions on contact with water, degrading their color. Old cast-iron pipes release ferric ions into the water, degrading its color. The high color values observed in the vicinity of drains are thought to be due to irregular maintenance of the network. In fact, after network maintenance, a reduction rate ranging from 2% to 73% is observed for turbidity, while for color, the rate varies from 5% to 72%. In short, the network’s obsolescence and irregular maintenance contribute significantly to the deterioration of water quality.展开更多
This paper analyzes the pipe network system of oil-gas collection and transportation for offshore oilfield development. A '0-1' integer linear programming model is constructed to optimize the investment of sea...This paper analyzes the pipe network system of oil-gas collection and transportation for offshore oilfield development. A '0-1' integer linear programming model is constructed to optimize the investment of seabed pipe network. The mathematical model is solved by the spanning tree method of graph theory and network analysis. All spanning trees of a network graph compose all the feasible solutions of the mathematical model. The optimal solution of the model is the spanning tree with the minimum cost among all spanning trees. This method can be used to optimize the seabed pipe network system and give a minimum cost plan for the development of offshore marginal oilfield groups.展开更多
文摘With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply and drainage system pipe network to effectively save energy while providing residents with more accessible water resources.Therefore,the municipal water supply and drainage system and the water transmission methods should be designed according to the geographical conditions of the city.In this paper,we mainly analyze the design of municipal water supply and drainage systems and the selection of water transmission methods.Besides,the optimization of the water supply and drainage network zoning process and pipe network maintenance is also discussed,so as to provide a reference for municipal water supply and drainage work.
基金financially supported by the National Key R&D Program of China (2021YFA1003501)the National Natural Science Foundation of China (No.U1906233,11732004)the Fundamental Research Funds for the Central Universities (DUT20ZD213,DUT20LAB308)。
文摘The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of the carcass layer, an equivalent simplified model is used to study the mechanical properties of the carcass layer. However, the current equivalent carcass model only considers the elastic deformation, and this simplification leads to huge errors in the calculation results. In this study, radial compression experiments were carried out to make the carcasses to undergo plastic deformation. Subsequently, a residual neural network based on the experimental data was established to predict the load-displacement curves of carcasses with different inner diameter in plastic states under radial compression.The established neural network model’s high precision was verified by experimental data, and the influence of the number of input variables on the accuracy of the neural network was discussed. The conclusion shows that the residual neural network model established based on the experimental data of the small-diameter carcass layer can predict the load-displacement curve of the large-diameter carcass layer in the plastic stage. With the decrease of input data, the prediction accuracy of residual network model in plasticity stage will decrease.
文摘Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events.
文摘With a water-supply network by dynamic programming. The minimal as an example, the network was optimized annual discounted costs were taken as an objective function and node pressure etc. as constraint conditions. The alternative pipe diameters were optimized as per enumeration method and the group allowing objective function with the least values would be the optimized one. It is proved the optimized pipe network reduced by 11.49% in terms of cost and the optimized ben- efits proved much significant.
基金Project(531107040300) supported by the Fundamental Research Funds for the Central Universities in ChinaProject(2006BAJ04B04) supported by the National Science and Technology Pillar Program during the Eleventh Five-year Plan Period of China
文摘As for the factors affecting the heat transfer performance of complex and nonlinear oscillating heat pipe (OHP),grey relational analysis (GRA) was used to deal with the relationship between heat transfer rate of a looped copper-water OHP and charging ratio,inner diameter,inclination angel,heat input,number of turns,and the main influencing factors were defined.Then,forecasting model was obtained by using main influencing factors (such as charging ratio,interior diameter,and inclination angel) as the inputs of function chain neural network.The results show that the relative average error between the predicted and actual value is 4%,which illustrates that the function chain neural network can be applied to predict the performance of OHP accurately.
基金Project(50278062) supported by the National Natural Science Foundation of ChinaProject(003611611)supported by the Natural Science Foundation of Tianjin, China
文摘The optimal operation of water distribution networks under local pipe failures, such as water main breaks, was proposed. Based on a hydraulic analysis and a simulation of water distribution networks, a macroscopic model for a network under a local pipe failure was established by the statistical regression. After the operation objectives under a local pipe failure were determined, the optimal operation model was developed and solved by the genetic algorithm. The program was developed and examined by a city distribution network. The optimal operation alternative shows that the electricity cost is saved approximately 11%, the income of the water corporation is increased approximately 5%, and the pressure in the water distribution network is distributed evenly to ensure the network safe operation. Therefore, the proposed method for optimal operation under local pipe failure is feasible and cost-effective.
文摘A new geometric modeling approach is introduced in this paper.First the principle of modeling of 3D pipe network is discussed in detail.Then the procedures of implementing pipe network visualization and system functions are presented.Last,several efficient methods for speeding up display of graphics are introduced.The new geometric modeling approach offers to people a new way to solve 3D visualization of complex urban pipe network.
基金Supported by the National High Technology Research and Development Programme of China(No.2006AA04Z112)the National Natural Science Foundation of China(No.51175287)the National S&T Major Program(No.2009ZX02001-003)
文摘This paper analyzes conflict features in architecture pipe routing,and builds a pipe routing design conflict model by taking into account of discrete nominal internal diameter selection of pipes,material costs,and conflict solution sequence.Considering pipe routing as an assembling process,a conflict detection approach for pipe routing in collaborative architectural design is proposed based on an aforementioned model.Constraint network is used to describe the relationship among pipe routing design parameters and constraints;design conflicts are detected by matching designers' input and constraint network;and detected design conflicts are reordered according to the number of pipe parameters in conflicts.In order to support the collaborative requirement of pipe routing design,a prototype system using browser/server architecture is developed.An illustrative example of water pipe routing in a room is used to show the effectiveness and efficiency of the approach.
文摘In this paper the dynamic characteristics in pipes are analyzed with frequency method, and puts forward a simple and practical describing method. By establishing the model library beforehand, the modeling of the pipe net is completed automatically, and we can accurately calculate the impedance characteristics of the pipe network, achieve the reasonable configuration of the pipe network, so that to decrease the pressure pulsation.
文摘Thermal performance of a loop heat pipe with two evaporators and two condensers was examined using a lumped network model analysis. Thermosyphon-type vertical loop heat pipe and capillary-pump-type horizontal loop heat pipe were calculated by examining the change of heating rate of two evaporators. Calculation results showed that the vapor and liquid flow rates in the loop heat pipe and the thermal conductance of the heat pipe changed significantly depending on the distribution ratio of the heating rate of the multiple evaporators. The thermal performance of the vertical loop heat pipe with two evaporators was also examined and experimental results of flow direction and thermal conductance of the heat pipe agreed with the analytical results. The lumped network model analysis is therefore considered accurate and preferable for the practical design of a loop heat pipe with multiple evaporators.
文摘The potability of drinking water depends not only on the source and the treatment system, but also on the quality of the waterworks. In fact, the quality of drinking water is considerably degraded by the dilapidated state and lack of maintenance of drinking water networks. In Côte d’Ivoire, the majority of drinking water networks in the various towns are ageing. In Daloa, despite the efforts made by the company in charge of water treatment and distribution to make the water drinkable, the water at consumers’ taps is often colored, has an unpleasant aftertaste and settles after collection. As a result, people are concerned about the potability of tap water, and some are turning to alternative sources of drinking water of unknown quality. In order to determine the factors responsible for the deterioration in water color and taste, as well as the sectors of the network most affected, a diagnosis of the network’s equipment was carried out. Water samples taken from the network were analyzed for color and turbidity. The diagnosis revealed that most of the equipment (suction pads, valves, drains and fire hydrants) is outdated and irregularly maintained. Analyses show that the water is more colored in cast-iron and PVC pipes than in asbestos cement pipes. Coloration values in the network range from 0 to 27 UVC for asbestos cement pipes, from 15 to 56 UCV for ductile iron pipes, and from 11 to 102 UCV for PVC pipes. On the over hand, turbidity values vary from 8.02 to 3.32 NTU for ductile cast iron pipes, 8.51 to 16.98 NTU for asbestos cement pipes and 0.9 to 6.98 NTU for PVC pipes. Old cast-iron pipes release ferric ions on contact with water, degrading their color. Old cast-iron pipes release ferric ions into the water, degrading its color. The high color values observed in the vicinity of drains are thought to be due to irregular maintenance of the network. In fact, after network maintenance, a reduction rate ranging from 2% to 73% is observed for turbidity, while for color, the rate varies from 5% to 72%. In short, the network’s obsolescence and irregular maintenance contribute significantly to the deterioration of water quality.
文摘This paper analyzes the pipe network system of oil-gas collection and transportation for offshore oilfield development. A '0-1' integer linear programming model is constructed to optimize the investment of seabed pipe network. The mathematical model is solved by the spanning tree method of graph theory and network analysis. All spanning trees of a network graph compose all the feasible solutions of the mathematical model. The optimal solution of the model is the spanning tree with the minimum cost among all spanning trees. This method can be used to optimize the seabed pipe network system and give a minimum cost plan for the development of offshore marginal oilfield groups.