This paper presents a method to calibrate pipe roughness coefficient (i.e., Manning n-factor) with genetic algorithm (GA) under multiple loading conditions. Due to the old pipe age as well as deleting valves and blend...This paper presents a method to calibrate pipe roughness coefficient (i.e., Manning n-factor) with genetic algorithm (GA) under multiple loading conditions. Due to the old pipe age as well as deleting valves and blends in the skeleton of distribution network, most of the pipes in hydraulic model of practical water distribution system (WDS) are rough. The commonly used Hazen-Williams C-factor is therefore replaced by Manning n-factor in calibrating WDS hydraulic model. Adjustment to GA is designed, and the program efficiency is improved. A case study shows that the adjustment can save 60% of the total runtime. About 90% of the relative differences between simulated and observed pressures at monitoring locations are lower than 3%, which suggests that the proposed adjustment to the calibration is efficient and effective.展开更多
基金Supported by National Natural Science Foundation of China (No 50778121)Science and Technology Innovation Special Foundation of Tianjin (NO 06FZZDSH00900)
文摘This paper presents a method to calibrate pipe roughness coefficient (i.e., Manning n-factor) with genetic algorithm (GA) under multiple loading conditions. Due to the old pipe age as well as deleting valves and blends in the skeleton of distribution network, most of the pipes in hydraulic model of practical water distribution system (WDS) are rough. The commonly used Hazen-Williams C-factor is therefore replaced by Manning n-factor in calibrating WDS hydraulic model. Adjustment to GA is designed, and the program efficiency is improved. A case study shows that the adjustment can save 60% of the total runtime. About 90% of the relative differences between simulated and observed pressures at monitoring locations are lower than 3%, which suggests that the proposed adjustment to the calibration is efficient and effective.