The dynamic analysis of a pipe system is one of the most crucial problems for the entire mining system. A discrete element method (DEM) is proposed for the analysis of a deep-ocean mining pipe system, including the ...The dynamic analysis of a pipe system is one of the most crucial problems for the entire mining system. A discrete element method (DEM) is proposed for the analysis of a deep-ocean mining pipe system, including the lift pipe, pump, buffer and flexible hose. By the discrete element method, the pipe is divided into some rigid elements that are linked by flexible connectors. First, two examples representing static analysis and dynamic analysis respectively are given to show that the DEM model is feasible. Then the three-dimensional DEM model is used for dynamic analysis of the mining pipe system. The dynamic motions of the entire mining pipe system under different work conditions are discussed. Some suggestions are made for the actual operation of deep-ocean mining systems.展开更多
The coupling vibration of a hydraulic pipe system consisting of two pipes is studied.The pipes are installed in parallel and fixed at their ends,and are restrained by clips to one bracket at their middle points.The pi...The coupling vibration of a hydraulic pipe system consisting of two pipes is studied.The pipes are installed in parallel and fixed at their ends,and are restrained by clips to one bracket at their middle points.The pipe subjected to the basement excitation at the left end is named as the active pipe,while the pipe without excitation is called the passive pipe.The clips between the two pipes are the bridge for the vibration energy.The adjacent natural frequencies will enhance the vibration coupling.The governing equation of the coupled system is deduced by the generalized Hamilton principle,and is discretized to the modal space.The modal correction is used during the discretization.The investigation on the natural characters indicates that the adjacent natural frequencies can be adjusted by the stiffness of the two clips and bracket.The harmonic balance method(HBM)is used to study the responses in the adjacent natural frequency region.The results show that the vibration energy transmits from the active pipe to the passive pipe swimmingly via the clips together with a flexible bracket,while the locations of them are not node points.The adjacent natural frequencies may arouse wide resonance curves with two peaks for both pipes.The stiffness of the clip and bracket can release the vibration coupling.It is suggested that the stiffness of the clip on the passive pipe should be weak and the bracket should be strong enough.In this way,the vibration energy is reflected by the almost rigid bracket,and is hard to transfer to the passive pipe via a soft clip.The best choice is to set the clips at the pipe node points.The current work gives some suggestions for weakening the coupled vibration during the dynamic design of a coupled hydraulic pipe system.展开更多
This study is the result of ongoing research for a European Union 7th Framework Program Project regarding energy converters for very low heads, and aims to analyze optimization of new cost-effective hydraulic turbine ...This study is the result of ongoing research for a European Union 7th Framework Program Project regarding energy converters for very low heads, and aims to analyze optimization of new cost-effective hydraulic turbine designs for possible implementation in water supply systems (WSSs) or in other pressurized water pipe infrastructures, such as irrigation, wastewater, or drainage systems. A new methodology is presented based on a theoretical, technical and economic analysis. Viability studies focused on small power values for different pipe systems were investigated. Detailed analyses of alternative typical volumetric energy converters were conducted on the basis of mathematical and physical fundamentals as well as computational fluid dynamics (CFD) associated with the interaction between the flow conditions and the system operation. Important constraints (e.g., size, stability, efficiency, and continuous steady flow conditions) can be identified and a search for alternative rotary yolumetric converters is being conducted. As promising cost-effective solutions for the coming years, adapted rotor-dynamic turbomachines and non-conventional axial propeller devices were analyzed based on the basic principles of pumps operating as turbines, as well as through an extensive comparison between simulations and experimental tests.展开更多
The vibration failure of pipe system of aeroengine seriously influences the safety of aircraft.Its damping design is determined by the selection of the design target,method and their feasibility.Five objective functio...The vibration failure of pipe system of aeroengine seriously influences the safety of aircraft.Its damping design is determined by the selection of the design target,method and their feasibility.Five objective functions for the vibration design of a pipeline or pipe system are introduced,namely,the frequency,amplitude,transfer ratio,curvature and deformation energy as options for the optimization process.The genetic algorithms(GA)are adopted as the opti- mization method,in which the selection of the adaptive genetic operators and the method of implementation of the GA process are crucial.The optimization procedure for all the above ob- jective functions is carried out using GA on the basis of finite element software-MSC/NASTRAN. The optimal solutions of these functions and the stress distribution on the structure are calculated and compared through an example,and their characteristics are analyzed.Finally we put forward two new objective functions,curvature and deformation energy for pipe system optimization.The calculations show that using the curvature as the objective function can reflect the case of minimal stress,and the optimization results using the deformation energy represent lesser and more uni- form stress distribution.The calculation results and process showed that the genetic algorithms can effectively implement damping design of engine pipelines and satisfy the efficient engineering design requirement.展开更多
The pipe system roles as a main bridge between membrane modules and pumps in membrane water treatment plants. Membrane operation modes generally consist of filtration and backwash processes in a normal mode, a pressur...The pipe system roles as a main bridge between membrane modules and pumps in membrane water treatment plants. Membrane operation modes generally consist of filtration and backwash processes in a normal mode, a pressure decay test as an integrity test and a chemical circulation through pipe system in a cleaning mode. Thus factors effecting on membrane performance should be sufficiently considered before design and operation. This study evaluated flow analysis for vibration diagnostic and evaluation of the fatigue lifetime in the microfiltration system applied for a drinking water treatment plant. Vibration of main membrane pipelines was measured to identify the source of vibration. Also natural frequency and fluid dynamics was calculated by computational fluid dynamics. It showed that maximum magnitude frequencies were at 12 Hz and 22 Hz, respectively at water and air pipeline during filtration and backwash. Backwash process caused mainly vibration on the backwash water pipe. The calculated frequency from analysis of frequency response and CFD was in a good agreement with the measured frequency. Fatigue analysis showed that pipelines were getting little damage caused by vibration. Fatigue lifetime was predicted more than 15 years under the operation condition of daily filtration, and more than 27 years under the operation condition of a daily backwash mode, resulting in minor damage on the pipe lifetime.展开更多
Bernoulli’s principle states that an increase in the speed of a fluid is directly related to the decrease in the fluid’s potential energy. Many engineers refer to Bernoulli’s equations to calculate the pressure of ...Bernoulli’s principle states that an increase in the speed of a fluid is directly related to the decrease in the fluid’s potential energy. Many engineers refer to Bernoulli’s equations to calculate the pressure of a system. The objective of this undergraduate research endeavor is to illustrate the accuracy of his theory and apply it to one of the most common fluid systems in residential homes, a pump pipe system. The research team consisted of a diverse body of undergraduate students with different educational and cultural backgrounds. Completing this objective further improved every member’s problem solving, communication skills, self-confidence, ability to rationalize and transcribe physical phenomena as well visually express them to rest of the engineering community. The findings of this research showed a relationship between various parameters such as, pipe length, pipe roughness, diameter, and specific gravity of the liquid.展开更多
Ice pigging is an emerging technique for pipe cleaning in drinking water distribution systems.However,substantial confusion and controversy exist on the potential impacts of ice pigging on bulk water quality.This stud...Ice pigging is an emerging technique for pipe cleaning in drinking water distribution systems.However,substantial confusion and controversy exist on the potential impacts of ice pigging on bulk water quality.This study monitored the microstructural features and composition of sediments and microbial community structures in bulk water in eight multimaterial Chinese networks.Chloride concentration analysis demonstrated that separate cleaning of pipes with different materials in complex networks could mitigate the risk of losing ice pigs and degrading water quality.The microstructural and trace element characterization results showed that ice pigs would scarcely disturb the inner surfaces of long-used pipes.The bacterial richness and diversity of bulk water decreased significantly after ice pigging.Furthermore,correlations were established between pipe service age,temperature,and chloride and total iron concentrations,and the 15 most abundant taxa in bulk water,which could be used to guide practical ice pigging operations.展开更多
Solar energy is a valuable renewable energy source,and photovoltaic(PV)systems are a practical approach to harnessing this energy.Nevertheless,low energy efficiency is considered a major setback of the system.Moreover...Solar energy is a valuable renewable energy source,and photovoltaic(PV)systems are a practical approach to harnessing this energy.Nevertheless,low energy efficiency is considered a major setback of the system.Moreover,high cell temperature and reflection of solar irradiance from the panel are considered chief culprits in this regard.Employing pulsating heat pipes(PHPs)is an innovative and useful approach to improving solar panel performance.This study presents the results of the power performance of a PV panel attached to a newly designed spiral pulsating heat pipe,while graphene oxide nanofluid with three different concentrations was used as a working fluid to maximize the efficacy of the solar panel.The study proved that the cooling method delivered high efficiency by reducing the temperature,especially in the middle of the day.Using nanofluid graphene oxide at concentrations of 0.2,0.4,and 0.8 gr/lit as the working fluid can reduce the thermal resistance of PHPs by over 30%,24%,and 15%,respectively.This,in turn,enhances the system’s electrical power output by approximately 9%,7%,and 6%,respectively.展开更多
A new kind of governing equations for water hammer based on the elasticcolumn theory was proposed and adopted to analyse water hammer phenomenon in the pipe system with avertical column surge chamber and water level f...A new kind of governing equations for water hammer based on the elasticcolumn theory was proposed and adopted to analyse water hammer phenomenon in the pipe system with avertical column surge chamber and water level fluctuation in the surge chamber during pressuretransient. The wrongness existing in the classical governing equations for water hammer wasanalysed. A typical reservoir-valve pipe system was chosen as an example to verify the new governingequations numerically and experimentally. The finite difference method based on the method ofcharacteristics was used to solve numerically the nonlinear characteristic equations. The temporalevolutions of transient volume flux and head and of water level fluctuation for various surgechamber configurations were worked out, assuming that the air in the surge chamber are compressible.The relevant experiment was conducted to verify the new governing equations and numerical method.The numerical and experimental results show that the new governing equations are valid and theconventional assumption that the pressure head at the base of a surge chamber equals that of thestatic head above it during pressure transient is not always valid. The surge chamber generallyreises the period of transient pressure wave in pipe system, reduces the maximum pressure envelopeand lifts the minimum envelope substantially. The water level fluctuation in the surge chamber wasnumerically and experimentally observed. Increasing the size of the surge chamber and/or decreasingthe initial air pressure in the surge chamber enhance the effectiveness of the surge chamber insuppressing pressure wave.展开更多
The method of characteristics was adopted to analyze water level fluctuationexisting in Bull-Horn surge chamber in reservoir-valve pipe system during waterhammer caused byvalve closure operation. The Finite Difference...The method of characteristics was adopted to analyze water level fluctuationexisting in Bull-Horn surge chamber in reservoir-valve pipe system during waterhammer caused byvalve closure operation. The Finite Difference Method (FDM) based on the method of characteristicswas used to solve numerically the nonlinear two-parameter characteristic equations governingwaterhammer. The finite fixed mesh was applied to obtaining the discrete form of the governingequations and discrete flow-field. The temporal trends of the y -directional flow, water level,velocity of water level and head difference for different heights of water in surge chamber,diameters of cylinder, cutting angles of surge chamber, lengths of horizontal cylinder and lengthsof inclined cylinder were obtained under the condition that the air in surge chamber iscompressible. The conclusions on water level fluctuation in Bull-Horn surge chamber were given basedon the analyses of the obtained transient numerical results. These conclusions can play a guidingrole in designing pipe system and executing surge suppression.展开更多
Seperated heat pipe systems are widely used in the fields of waste heat recovery and air conditioning due to their high heat transfer capability,and optimization of heat transfer process plays an important role in hig...Seperated heat pipe systems are widely used in the fields of waste heat recovery and air conditioning due to their high heat transfer capability,and optimization of heat transfer process plays an important role in high-efficiency energy utilization and energy conservation.In this paper,the entransy dissipation analysis is conducted for the separated heat pipe system,and the result indicates that minimum thermal resistance principle is applicable to the optimization of the separated heat pipe system.Whether in the applications of waste heat recovery or air conditioning,the smaller the entransy-dissipation-based thermal re-sistance of the separated heat pipe system is,the better the heat transfer performance will be.Based on the minimum thermal resistance principle,the optimal area allocation relationship between evaporator and condenser is deduced,which is numeri-cally verified in the optimation design of separated heat pipe system.展开更多
The filling and solidification of a malleable iron pipe casting manufactured by DISA casting mold line with different design parameters were calculated by using software MAGMASOFT. Then the shrinkage porosity was pred...The filling and solidification of a malleable iron pipe casting manufactured by DISA casting mold line with different design parameters were calculated by using software MAGMASOFT. Then the shrinkage porosity was predicted by thermal criterion. Based on the simulation results, the influences of the runner ratio and feeder position on the porosity were discussed. The results show that synchronization of injection can be significantly influenced by the size of downsprue section, and an de-sign structure of DISA gating system was used to solve the problem of flow imbalance in the filling procegs. At the same time, the riser was designed on the hotspot for feeding shrinkage. At last, the optimizated gating system and feeding system were ac-complished to eliminate shrinkage porosity.展开更多
The simulation model of a valve control hydraulic system with long pipe isestablished in Simulink4.0, and then the step responses of the systems with difference pipeparameters are investigated by simulation. Simulatio...The simulation model of a valve control hydraulic system with long pipe isestablished in Simulink4.0, and then the step responses of the systems with difference pipeparameters are investigated by simulation. Simulation results show that the long pipes will slowdown the step response of system and make it fluctuate periodically. The results of simulationconform to the results of experiment on the whole, which proves the mathematic model is correct.展开更多
A gravitational flat-plate heat pipe is designed and fabricated in this paper to serve as a heat spreader to diffuse the local heat source to the hot side of the thermoelectric power module.Based on this, an experimen...A gravitational flat-plate heat pipe is designed and fabricated in this paper to serve as a heat spreader to diffuse the local heat source to the hot side of the thermoelectric power module.Based on this, an experimental test for the thermoelectric power generation system is conducted to study the influences of the heat spreader on the temperature uniformity and power generation performance when exposing to a local heat source.In addition,the effects of the heating power, inclination angle, and local heat source size on the power generation performance of the thermoelectric power module using a flat-plate heat pipe as a heat spreader are examined and compared with that using a metal plate.The results indicate that the gravitational flat-plate heat pipe has considerable advantages over the metal plate in the temperature uniformity.The superiority of temperature uniformity in the improvement of power generation performance for the thermoelectric power system using a heat pipe is demonstrated.Particularly, the heat pipe shows good adaptability to placement mode and the local heat source size, which is beneficial to the application in the thermoelectric power generation.展开更多
Taking cemented coal gangue pipeline transportation system in Suncun Coal Mine, Xinwen Mining Group, Shandong Province, China, as an example, the hydraulic calculation approaches and process about gravity pipeline tra...Taking cemented coal gangue pipeline transportation system in Suncun Coal Mine, Xinwen Mining Group, Shandong Province, China, as an example, the hydraulic calculation approaches and process about gravity pipeline transportation of backfill slurry were investigated. The results show that the backfill capability of the backfill system should be higher than 74.4 m3/h according to the mining production and backfill times in the mine; the minimum velocity (critical velocity) and practical working velocity of the backfill slurry are 1.44 and 3.82 m/s, respectively. Various formulae give the maximum ratio of total length to vertical height of pipeline (L/H ratio) of the backfill system of 5.4, and then the reliability and capability of the system can be evaluated.展开更多
The limited availability of studies on the natural convection heat transfer characteristics of fluoride salt has hindered progress in the design of passive residual heat removal systems(PRHRS)for molten salt reactors....The limited availability of studies on the natural convection heat transfer characteristics of fluoride salt has hindered progress in the design of passive residual heat removal systems(PRHRS)for molten salt reactors.This paper presents results from a numerical investigation of natural convection heat transfer characteristics of fluoride salt and heat pipes in the drain tank of a PRHRS.Simulation results are compared with experimental data,demonstrating the accuracy of the calculation methodology.Temperature distribution of fluoride salt and heat transfer characteristics are obtained and analyzed.The radial temperature of liquid fluoride salt in the drain tank shows a uniform distribution,while temperatures increase with increase in axial height from the bottom to the top of the drain tank.In addition,natural convection intensity increases with increase in height of the heat pipes in the tank.Spacing between heat pipes has no obvious effect on the natural convection heat transfer coefficient.This study will contribute to the design of passive heat removal systems for advanced nuclear reactors.展开更多
A hot primary-air pipe system is the bridge connecting an air-preheater with a coal mill in power generation stations.The effective geometrical configuration of the pipe network greatly affects the air flow distributi...A hot primary-air pipe system is the bridge connecting an air-preheater with a coal mill in power generation stations.The effective geometrical configuration of the pipe network greatly affects the air flow distribution and consequently influences the safe and economic operation of milling systems in power stations.In order to improve the properties of the air flow,in the present work the SIMPLEC method is used to simulate numerically the flow field for the original layout of the system.As a result,the internal mechanisms influencing the uneven pressure drop in each branch are explored and three optimization schemes are proposed accordingly.The numerical results indicate that,for the original layout,the local pressure drop of the tee section accounts for approximately 74%of the total drop of the system,with other pressure drops depending on the specific branch considered.It is shown that after optimization,a roughly balanced flow resistance and flow rate can be obtained.Compared with the original layout,the pressure drop relating to different branches is significantly reduced.展开更多
A test platform is established as per the practical working condition ofelevating platform fire truck. The influences of pipes and load on dynamic characteristics ofload-sensing system are studied by series of step re...A test platform is established as per the practical working condition ofelevating platform fire truck. The influences of pipes and load on dynamic characteristics ofload-sensing system are studied by series of step response experiments. Experimental results showthat the feedback pipe makes the most important influence on the dynamic response speed ofload-sensing system. Its internal diameter should be optimized for given length of pipe. On theother hand, the stability of load-sensing pump is improved as the length of input pipe increases ina certain range. The influence of input pipe on the dynamic response speed is caused mainly by thepressure-wave travel time in the input pipe.展开更多
A 3-D geometrical nonlinear model for the entire lift system of 1000-m sea trial system of China Ocean Mineral Resources R&D Association was established with finite element method.The model was utilized to analyze...A 3-D geometrical nonlinear model for the entire lift system of 1000-m sea trial system of China Ocean Mineral Resources R&D Association was established with finite element method.The model was utilized to analyze the dynamic characteristics of the vertical pipe under the influence of moving velocity,current direction and wave.The simulation results show that the axial stress is dominant on the vertical pipe,its maximum is located at the pipe top,all stresses are much less than the allowable value of the vertical pipe and joint;the heave motion leads to violent fluctuation of the force and stress,but a period of 8 s is not likely to resonate the present pipe;against the current,0.50 m/s is the suggested moving velocity of the ship and miner,while along the current,the moving velocity can be slightly higher than 0.75 m/s.展开更多
The flow field in junction is complicated due to the ripple property of oil flow velocity and different frequencies of two pumps in aircraft. In this study, the flow fields of T-junction and Y-junction were analyzed u...The flow field in junction is complicated due to the ripple property of oil flow velocity and different frequencies of two pumps in aircraft. In this study, the flow fields of T-junction and Y-junction were analyzed using shear stress transport (SST) model in ANSYS/CFX software. The simulation results identified the variation rule of velocity peak in T-junction with different frequencies and phase-differences, meanwhile, the eddy and velocity shock existed in the corner of the T-junction, and the limit working state was obtained. Although the eddy disappeared in Y-junction, the velocity shock and pressure loss were still too big. To address these faults, an arc-junction was designed. Based on the flow fields of arc-junction, the eddy in the junction corner disappeared and the maximum of velocity peak declined compared to T-and Y-junction. Additionally, 8 series of arc-junction with different radiuses were tested to get the variation rule of velocity peak. Through the computation of the pressure loss of three junctions, the arc-junction had a lowest loss value, and its pressure loss reached the minimum value when the curvature radius is 35.42 mm, meanwhile, the velocity shock has decreased in a low phase.展开更多
基金This researchis part of a project financially supported by the National Natural Science Goundation of China(GrantNo.50275152)National Deep-Sea Technology Project of Development and Research.(Grant No.DY105-3-2-2)
文摘The dynamic analysis of a pipe system is one of the most crucial problems for the entire mining system. A discrete element method (DEM) is proposed for the analysis of a deep-ocean mining pipe system, including the lift pipe, pump, buffer and flexible hose. By the discrete element method, the pipe is divided into some rigid elements that are linked by flexible connectors. First, two examples representing static analysis and dynamic analysis respectively are given to show that the DEM model is feasible. Then the three-dimensional DEM model is used for dynamic analysis of the mining pipe system. The dynamic motions of the entire mining pipe system under different work conditions are discussed. Some suggestions are made for the actual operation of deep-ocean mining systems.
基金Project supported by the National Natural Science Foundation of China(No.12002195)the Pujiang Project of Shanghai Science and Technology Commission of China(No.20PJ1404000)。
文摘The coupling vibration of a hydraulic pipe system consisting of two pipes is studied.The pipes are installed in parallel and fixed at their ends,and are restrained by clips to one bracket at their middle points.The pipe subjected to the basement excitation at the left end is named as the active pipe,while the pipe without excitation is called the passive pipe.The clips between the two pipes are the bridge for the vibration energy.The adjacent natural frequencies will enhance the vibration coupling.The governing equation of the coupled system is deduced by the generalized Hamilton principle,and is discretized to the modal space.The modal correction is used during the discretization.The investigation on the natural characters indicates that the adjacent natural frequencies can be adjusted by the stiffness of the two clips and bracket.The harmonic balance method(HBM)is used to study the responses in the adjacent natural frequency region.The results show that the vibration energy transmits from the active pipe to the passive pipe swimmingly via the clips together with a flexible bracket,while the locations of them are not node points.The adjacent natural frequencies may arouse wide resonance curves with two peaks for both pipes.The stiffness of the clip and bracket can release the vibration coupling.It is suggested that the stiffness of the clip on the passive pipe should be weak and the bracket should be strong enough.In this way,the vibration energy is reflected by the almost rigid bracket,and is hard to transfer to the passive pipe via a soft clip.The best choice is to set the clips at the pipe node points.The current work gives some suggestions for weakening the coupled vibration during the dynamic design of a coupled hydraulic pipe system.
基金supported by the FCT (PTDC/ECM/65731/2006)the 7FP European HYLOW Project (Grant No. 212423)
文摘This study is the result of ongoing research for a European Union 7th Framework Program Project regarding energy converters for very low heads, and aims to analyze optimization of new cost-effective hydraulic turbine designs for possible implementation in water supply systems (WSSs) or in other pressurized water pipe infrastructures, such as irrigation, wastewater, or drainage systems. A new methodology is presented based on a theoretical, technical and economic analysis. Viability studies focused on small power values for different pipe systems were investigated. Detailed analyses of alternative typical volumetric energy converters were conducted on the basis of mathematical and physical fundamentals as well as computational fluid dynamics (CFD) associated with the interaction between the flow conditions and the system operation. Important constraints (e.g., size, stability, efficiency, and continuous steady flow conditions) can be identified and a search for alternative rotary yolumetric converters is being conducted. As promising cost-effective solutions for the coming years, adapted rotor-dynamic turbomachines and non-conventional axial propeller devices were analyzed based on the basic principles of pumps operating as turbines, as well as through an extensive comparison between simulations and experimental tests.
基金Project supported by Shenyang Aviation Engine Institute of Aviation Industrial Group(No.2483-9704).
文摘The vibration failure of pipe system of aeroengine seriously influences the safety of aircraft.Its damping design is determined by the selection of the design target,method and their feasibility.Five objective functions for the vibration design of a pipeline or pipe system are introduced,namely,the frequency,amplitude,transfer ratio,curvature and deformation energy as options for the optimization process.The genetic algorithms(GA)are adopted as the opti- mization method,in which the selection of the adaptive genetic operators and the method of implementation of the GA process are crucial.The optimization procedure for all the above ob- jective functions is carried out using GA on the basis of finite element software-MSC/NASTRAN. The optimal solutions of these functions and the stress distribution on the structure are calculated and compared through an example,and their characteristics are analyzed.Finally we put forward two new objective functions,curvature and deformation energy for pipe system optimization.The calculations show that using the curvature as the objective function can reflect the case of minimal stress,and the optimization results using the deformation energy represent lesser and more uni- form stress distribution.The calculation results and process showed that the genetic algorithms can effectively implement damping design of engine pipelines and satisfy the efficient engineering design requirement.
文摘The pipe system roles as a main bridge between membrane modules and pumps in membrane water treatment plants. Membrane operation modes generally consist of filtration and backwash processes in a normal mode, a pressure decay test as an integrity test and a chemical circulation through pipe system in a cleaning mode. Thus factors effecting on membrane performance should be sufficiently considered before design and operation. This study evaluated flow analysis for vibration diagnostic and evaluation of the fatigue lifetime in the microfiltration system applied for a drinking water treatment plant. Vibration of main membrane pipelines was measured to identify the source of vibration. Also natural frequency and fluid dynamics was calculated by computational fluid dynamics. It showed that maximum magnitude frequencies were at 12 Hz and 22 Hz, respectively at water and air pipeline during filtration and backwash. Backwash process caused mainly vibration on the backwash water pipe. The calculated frequency from analysis of frequency response and CFD was in a good agreement with the measured frequency. Fatigue analysis showed that pipelines were getting little damage caused by vibration. Fatigue lifetime was predicted more than 15 years under the operation condition of daily filtration, and more than 27 years under the operation condition of a daily backwash mode, resulting in minor damage on the pipe lifetime.
文摘Bernoulli’s principle states that an increase in the speed of a fluid is directly related to the decrease in the fluid’s potential energy. Many engineers refer to Bernoulli’s equations to calculate the pressure of a system. The objective of this undergraduate research endeavor is to illustrate the accuracy of his theory and apply it to one of the most common fluid systems in residential homes, a pump pipe system. The research team consisted of a diverse body of undergraduate students with different educational and cultural backgrounds. Completing this objective further improved every member’s problem solving, communication skills, self-confidence, ability to rationalize and transcribe physical phenomena as well visually express them to rest of the engineering community. The findings of this research showed a relationship between various parameters such as, pipe length, pipe roughness, diameter, and specific gravity of the liquid.
基金financially supported by the National Natural Science Foundation of China(52100015)the Zhejiang Provincial Natural Science Foundation of China(LQ22E080018)the China Postdoctoral Science Foundation(2021M692860).
文摘Ice pigging is an emerging technique for pipe cleaning in drinking water distribution systems.However,substantial confusion and controversy exist on the potential impacts of ice pigging on bulk water quality.This study monitored the microstructural features and composition of sediments and microbial community structures in bulk water in eight multimaterial Chinese networks.Chloride concentration analysis demonstrated that separate cleaning of pipes with different materials in complex networks could mitigate the risk of losing ice pigs and degrading water quality.The microstructural and trace element characterization results showed that ice pigs would scarcely disturb the inner surfaces of long-used pipes.The bacterial richness and diversity of bulk water decreased significantly after ice pigging.Furthermore,correlations were established between pipe service age,temperature,and chloride and total iron concentrations,and the 15 most abundant taxa in bulk water,which could be used to guide practical ice pigging operations.
文摘Solar energy is a valuable renewable energy source,and photovoltaic(PV)systems are a practical approach to harnessing this energy.Nevertheless,low energy efficiency is considered a major setback of the system.Moreover,high cell temperature and reflection of solar irradiance from the panel are considered chief culprits in this regard.Employing pulsating heat pipes(PHPs)is an innovative and useful approach to improving solar panel performance.This study presents the results of the power performance of a PV panel attached to a newly designed spiral pulsating heat pipe,while graphene oxide nanofluid with three different concentrations was used as a working fluid to maximize the efficacy of the solar panel.The study proved that the cooling method delivered high efficiency by reducing the temperature,especially in the middle of the day.Using nanofluid graphene oxide at concentrations of 0.2,0.4,and 0.8 gr/lit as the working fluid can reduce the thermal resistance of PHPs by over 30%,24%,and 15%,respectively.This,in turn,enhances the system’s electrical power output by approximately 9%,7%,and 6%,respectively.
文摘A new kind of governing equations for water hammer based on the elasticcolumn theory was proposed and adopted to analyse water hammer phenomenon in the pipe system with avertical column surge chamber and water level fluctuation in the surge chamber during pressuretransient. The wrongness existing in the classical governing equations for water hammer wasanalysed. A typical reservoir-valve pipe system was chosen as an example to verify the new governingequations numerically and experimentally. The finite difference method based on the method ofcharacteristics was used to solve numerically the nonlinear characteristic equations. The temporalevolutions of transient volume flux and head and of water level fluctuation for various surgechamber configurations were worked out, assuming that the air in the surge chamber are compressible.The relevant experiment was conducted to verify the new governing equations and numerical method.The numerical and experimental results show that the new governing equations are valid and theconventional assumption that the pressure head at the base of a surge chamber equals that of thestatic head above it during pressure transient is not always valid. The surge chamber generallyreises the period of transient pressure wave in pipe system, reduces the maximum pressure envelopeand lifts the minimum envelope substantially. The water level fluctuation in the surge chamber wasnumerically and experimentally observed. Increasing the size of the surge chamber and/or decreasingthe initial air pressure in the surge chamber enhance the effectiveness of the surge chamber insuppressing pressure wave.
文摘The method of characteristics was adopted to analyze water level fluctuationexisting in Bull-Horn surge chamber in reservoir-valve pipe system during waterhammer caused byvalve closure operation. The Finite Difference Method (FDM) based on the method of characteristicswas used to solve numerically the nonlinear two-parameter characteristic equations governingwaterhammer. The finite fixed mesh was applied to obtaining the discrete form of the governingequations and discrete flow-field. The temporal trends of the y -directional flow, water level,velocity of water level and head difference for different heights of water in surge chamber,diameters of cylinder, cutting angles of surge chamber, lengths of horizontal cylinder and lengthsof inclined cylinder were obtained under the condition that the air in surge chamber iscompressible. The conclusions on water level fluctuation in Bull-Horn surge chamber were given basedon the analyses of the obtained transient numerical results. These conclusions can play a guidingrole in designing pipe system and executing surge suppression.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50906042,51036003)
文摘Seperated heat pipe systems are widely used in the fields of waste heat recovery and air conditioning due to their high heat transfer capability,and optimization of heat transfer process plays an important role in high-efficiency energy utilization and energy conservation.In this paper,the entransy dissipation analysis is conducted for the separated heat pipe system,and the result indicates that minimum thermal resistance principle is applicable to the optimization of the separated heat pipe system.Whether in the applications of waste heat recovery or air conditioning,the smaller the entransy-dissipation-based thermal re-sistance of the separated heat pipe system is,the better the heat transfer performance will be.Based on the minimum thermal resistance principle,the optimal area allocation relationship between evaporator and condenser is deduced,which is numeri-cally verified in the optimation design of separated heat pipe system.
文摘The filling and solidification of a malleable iron pipe casting manufactured by DISA casting mold line with different design parameters were calculated by using software MAGMASOFT. Then the shrinkage porosity was predicted by thermal criterion. Based on the simulation results, the influences of the runner ratio and feeder position on the porosity were discussed. The results show that synchronization of injection can be significantly influenced by the size of downsprue section, and an de-sign structure of DISA gating system was used to solve the problem of flow imbalance in the filling procegs. At the same time, the riser was designed on the hotspot for feeding shrinkage. At last, the optimizated gating system and feeding system were ac-complished to eliminate shrinkage porosity.
基金This project is supported by National Natural Science Foundation of China(No.59875076).
文摘The simulation model of a valve control hydraulic system with long pipe isestablished in Simulink4.0, and then the step responses of the systems with difference pipeparameters are investigated by simulation. Simulation results show that the long pipes will slowdown the step response of system and make it fluctuate periodically. The results of simulationconform to the results of experiment on the whole, which proves the mathematic model is correct.
基金Supported by the National Natural Science Foundation of China(U1737104)the Natural Science Foundation of Jiangsu Province(BK20170082)+1 种基金the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(the second phase)(U1501501)the Postgraduate Research&Practice Innovation Program of Jiangsu Province
文摘A gravitational flat-plate heat pipe is designed and fabricated in this paper to serve as a heat spreader to diffuse the local heat source to the hot side of the thermoelectric power module.Based on this, an experimental test for the thermoelectric power generation system is conducted to study the influences of the heat spreader on the temperature uniformity and power generation performance when exposing to a local heat source.In addition,the effects of the heating power, inclination angle, and local heat source size on the power generation performance of the thermoelectric power module using a flat-plate heat pipe as a heat spreader are examined and compared with that using a metal plate.The results indicate that the gravitational flat-plate heat pipe has considerable advantages over the metal plate in the temperature uniformity.The superiority of temperature uniformity in the improvement of power generation performance for the thermoelectric power system using a heat pipe is demonstrated.Particularly, the heat pipe shows good adaptability to placement mode and the local heat source size, which is beneficial to the application in the thermoelectric power generation.
基金Project(50490270) supported by the National Natural Science Foundation of China
文摘Taking cemented coal gangue pipeline transportation system in Suncun Coal Mine, Xinwen Mining Group, Shandong Province, China, as an example, the hydraulic calculation approaches and process about gravity pipeline transportation of backfill slurry were investigated. The results show that the backfill capability of the backfill system should be higher than 74.4 m3/h according to the mining production and backfill times in the mine; the minimum velocity (critical velocity) and practical working velocity of the backfill slurry are 1.44 and 3.82 m/s, respectively. Various formulae give the maximum ratio of total length to vertical height of pipeline (L/H ratio) of the backfill system of 5.4, and then the reliability and capability of the system can be evaluated.
基金supported by the National Key R&D Program of China(No.2019YFB1901100)the National Natural Science Foundation of China(No.11705138)the China National Postdoctoral Program for Innovative Talents(No.BX201600124)。
文摘The limited availability of studies on the natural convection heat transfer characteristics of fluoride salt has hindered progress in the design of passive residual heat removal systems(PRHRS)for molten salt reactors.This paper presents results from a numerical investigation of natural convection heat transfer characteristics of fluoride salt and heat pipes in the drain tank of a PRHRS.Simulation results are compared with experimental data,demonstrating the accuracy of the calculation methodology.Temperature distribution of fluoride salt and heat transfer characteristics are obtained and analyzed.The radial temperature of liquid fluoride salt in the drain tank shows a uniform distribution,while temperatures increase with increase in axial height from the bottom to the top of the drain tank.In addition,natural convection intensity increases with increase in height of the heat pipes in the tank.Spacing between heat pipes has no obvious effect on the natural convection heat transfer coefficient.This study will contribute to the design of passive heat removal systems for advanced nuclear reactors.
文摘A hot primary-air pipe system is the bridge connecting an air-preheater with a coal mill in power generation stations.The effective geometrical configuration of the pipe network greatly affects the air flow distribution and consequently influences the safe and economic operation of milling systems in power stations.In order to improve the properties of the air flow,in the present work the SIMPLEC method is used to simulate numerically the flow field for the original layout of the system.As a result,the internal mechanisms influencing the uneven pressure drop in each branch are explored and three optimization schemes are proposed accordingly.The numerical results indicate that,for the original layout,the local pressure drop of the tee section accounts for approximately 74%of the total drop of the system,with other pressure drops depending on the specific branch considered.It is shown that after optimization,a roughly balanced flow resistance and flow rate can be obtained.Compared with the original layout,the pressure drop relating to different branches is significantly reduced.
基金This project is supported by National Natural Science Foundation of China(No.59875076).
文摘A test platform is established as per the practical working condition ofelevating platform fire truck. The influences of pipes and load on dynamic characteristics ofload-sensing system are studied by series of step response experiments. Experimental results showthat the feedback pipe makes the most important influence on the dynamic response speed ofload-sensing system. Its internal diameter should be optimized for given length of pipe. On theother hand, the stability of load-sensing pump is improved as the length of input pipe increases ina certain range. The influence of input pipe on the dynamic response speed is caused mainly by thepressure-wave travel time in the input pipe.
基金Project (DY105-03-02-02) supported by the Deep-Ocean Technology Development Item of China
文摘A 3-D geometrical nonlinear model for the entire lift system of 1000-m sea trial system of China Ocean Mineral Resources R&D Association was established with finite element method.The model was utilized to analyze the dynamic characteristics of the vertical pipe under the influence of moving velocity,current direction and wave.The simulation results show that the axial stress is dominant on the vertical pipe,its maximum is located at the pipe top,all stresses are much less than the allowable value of the vertical pipe and joint;the heave motion leads to violent fluctuation of the force and stress,but a period of 8 s is not likely to resonate the present pipe;against the current,0.50 m/s is the suggested moving velocity of the ship and miner,while along the current,the moving velocity can be slightly higher than 0.75 m/s.
基金supported by the National Natural Science Foundation of China(No.51175014)
文摘The flow field in junction is complicated due to the ripple property of oil flow velocity and different frequencies of two pumps in aircraft. In this study, the flow fields of T-junction and Y-junction were analyzed using shear stress transport (SST) model in ANSYS/CFX software. The simulation results identified the variation rule of velocity peak in T-junction with different frequencies and phase-differences, meanwhile, the eddy and velocity shock existed in the corner of the T-junction, and the limit working state was obtained. Although the eddy disappeared in Y-junction, the velocity shock and pressure loss were still too big. To address these faults, an arc-junction was designed. Based on the flow fields of arc-junction, the eddy in the junction corner disappeared and the maximum of velocity peak declined compared to T-and Y-junction. Additionally, 8 series of arc-junction with different radiuses were tested to get the variation rule of velocity peak. Through the computation of the pressure loss of three junctions, the arc-junction had a lowest loss value, and its pressure loss reached the minimum value when the curvature radius is 35.42 mm, meanwhile, the velocity shock has decreased in a low phase.