期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于电子鼻技术的烟丝霉变检测 被引量:7
1
作者 黄星奕 陈玮 《食品与机械》 CSCD 北大核心 2015年第4期65-67,共3页
霉变是影响烟丝质量的重要因素之一,研究探索建立基于电子鼻技术的烟丝霉变检测方法。构建的电子鼻系统主要由5只SnO2半导体气敏传感器形成反应阵列,采用BP神经网络(back propagation neural network,BPNN)为主的模式识别方法。从每个... 霉变是影响烟丝质量的重要因素之一,研究探索建立基于电子鼻技术的烟丝霉变检测方法。构建的电子鼻系统主要由5只SnO2半导体气敏传感器形成反应阵列,采用BP神经网络(back propagation neural network,BPNN)为主的模式识别方法。从每个传感器响应曲线中提取2个特征值,使用主成分分析和BP神经网络对传感器阵列的所有特征值进行处理。主成分分析结果显示:非霉变烟丝和霉变烟丝存在可区分趋势,但不同霉变程度的烟丝间存在部分重叠。进一步利用BP神经网络对霉变烟丝判别,识别正确率达到90.00%。试验表明,使用电子鼻技术可以客观、有效地区分霉变和非霉变烟丝,为有效控制烟丝质量提供了可靠途径。 展开更多
关键词 烟丝 霉变 电子鼻 神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部