The history of the development of the tube & pipe division of Baosteel was reviewed in the article, focusing on the process of technical innovation and the product category enrichment. Thanks to the technical innovat...The history of the development of the tube & pipe division of Baosteel was reviewed in the article, focusing on the process of technical innovation and the product category enrichment. Thanks to the technical innovation, the Ф 140 product line has become the most efficient one in the world. With the advance of conglomeracy and the construction of the most advanced weld pipe line and the Ф460 premium quality finishing (PQF) line ,the catalogue of Baosteel tube &pipe products has covered the extensive range from the hot roll to cold roll, the seamless to the welded, and all of the product dimension scope from 25.4 mm to 610 ram. To meet the requirements of relevant industries such as energy ,transportation, machinery,ammunition and other relevant industries, the product variety is diverting from carbon steel to alloy steel, stainless steel and special alloys. As the Baosteel Steel Tubing Plant increased its number of production units, expanded its production capacity and developed new products ,it has grown into a pipe and tube supplier with global competitiveness.展开更多
The out-of-plane distortion induced in a multi-pass circumferential fillet welding of tube to pipe under different weld sequences and directions was studied using Finite Element Method(FEM) based Sysweld software and ...The out-of-plane distortion induced in a multi-pass circumferential fillet welding of tube to pipe under different weld sequences and directions was studied using Finite Element Method(FEM) based Sysweld software and verified experimentally. The FEM analyses consisted of thermal and mechanical analyses.Thermal analysis was validated with experimental transient temperature measurements. In the mechanical analysis, three different weld sequences and directions were considered to understand the mechanism of out-of-plane distortion in the tube to pipe T-joints. It was learnt that the welding direction plays a major role in minimizing the out-of-plane distortion. Further, during circumferential fillet welding of the tube to pipe component, the out-of-plane distortion generated in the x direction was primarily influenced by heat input due to the start and stop points, whereas the distortion in the z direction was influenced by time lag and welding direction. The FEM predicted distortion was compared with experimental measurements and the mechanism of out-of-plane distortion was confirmed.展开更多
The oil steel pipe in the petroleum industry is very important for its high price, large consumption volume and great effect on the development of petroleum industry. The oil steel pipe mainly includes oil well pipe (...The oil steel pipe in the petroleum industry is very important for its high price, large consumption volume and great effect on the development of petroleum industry. The oil steel pipe mainly includes oil well pipe (drill pipe, drill collar, casing and tubing etc.) and oil-gas transportation pipe. This paper is an attempt to make a comprehensive review on the current situation and prospect of the oil steel pipe in China, presenting the past , today and future of the China oil pipe. The first section is a historical review of the China oil pipe. The developing course and progress of the oil steel pipe products are presented. The second section is about the current situation of the China oil pipe. The general situation of the China’s steel pipe corporation and their products types, capability, etc. is introduced. The third section is about the prospect of the China oil pipe. This part mainly describes the new product research and development in China steel pipe corporations, which are facing more and more strict technical requirements of the petroleum industry in oil pipe, and reveals the prosperity of China’s steel pipe corporations.展开更多
The quality of micro heat pipe(MHP) is strongly affected by sealing technology. Based on the analysis of requirements of sealing technology, a cold welding technology was presented to seal MHP. In the cold welding pro...The quality of micro heat pipe(MHP) is strongly affected by sealing technology. Based on the analysis of requirements of sealing technology, a cold welding technology was presented to seal MHP. In the cold welding process, compression force was used to flatten micro groove copper(MGC) tube. Then the bonding of MGC tube was reached because of intensively plastic deformation of MGC tube under pressure. It is found that the plastic deformation area of the cold welding of MGC tube can be divided into three sections. The deformation of micro grooves in each section was investigated; the influence of the dimensions of cylindrical heads on the weld joint shape and strength was studied; and a comparison between smooth copper tube and MGC tube was done. The results show that a groove compression stage exists in the cold welding of MGC tube besides a flattened stage and a melting stage.展开更多
The collapse of thin-walled micro-grooved heat pipes is a common phenomenon in the tube flattening process, which seriously influences the heat transfer performance and appearance of heat pipe. At present, there is no...The collapse of thin-walled micro-grooved heat pipes is a common phenomenon in the tube flattening process, which seriously influences the heat transfer performance and appearance of heat pipe. At present, there is no other better method to solve this problem. A new method by heating the heat pipe is proposed to eliminate the collapse during the flattening process. The effectiveness of the proposed method is investigated through a theoretical model, a finite element(FE) analysis, and experimental method. Firstly, A theoretical model based on a deformation model of six plastic hinges and the Antoine equation of the working fluid is established to analyze the collapse of thin walls at different temperatures. Then, the FE simulation and experiments of flattening process at different temperatures are carried out and compared with theoretical model. Finally, the FE model is followed to study the loads of the plates at different temperatures and heights of flattened heat pipes. The results of the theoretical model conform to those of the FE simulation and experiments in the flattened zone. The collapse occurs at room temperature. As the temperature increases, the collapse decreases and finally disappears at approximately 130 ℃ for various heights of flattened heat pipes. The loads of the moving plate increase as the temperature increases. Thus, the reasonable temperature for eliminating the collapse and reducing the load is approximately 130℃. The advantage of the proposed method is that the collapse is reduced or eliminated by means of the thermal deformation characteristic of heat pipe itself instead of by external support. As a result, the heat transfer efficiency of heat pipe is raised.展开更多
文摘The history of the development of the tube & pipe division of Baosteel was reviewed in the article, focusing on the process of technical innovation and the product category enrichment. Thanks to the technical innovation, the Ф 140 product line has become the most efficient one in the world. With the advance of conglomeracy and the construction of the most advanced weld pipe line and the Ф460 premium quality finishing (PQF) line ,the catalogue of Baosteel tube &pipe products has covered the extensive range from the hot roll to cold roll, the seamless to the welded, and all of the product dimension scope from 25.4 mm to 610 ram. To meet the requirements of relevant industries such as energy ,transportation, machinery,ammunition and other relevant industries, the product variety is diverting from carbon steel to alloy steel, stainless steel and special alloys. As the Baosteel Steel Tubing Plant increased its number of production units, expanded its production capacity and developed new products ,it has grown into a pipe and tube supplier with global competitiveness.
文摘The out-of-plane distortion induced in a multi-pass circumferential fillet welding of tube to pipe under different weld sequences and directions was studied using Finite Element Method(FEM) based Sysweld software and verified experimentally. The FEM analyses consisted of thermal and mechanical analyses.Thermal analysis was validated with experimental transient temperature measurements. In the mechanical analysis, three different weld sequences and directions were considered to understand the mechanism of out-of-plane distortion in the tube to pipe T-joints. It was learnt that the welding direction plays a major role in minimizing the out-of-plane distortion. Further, during circumferential fillet welding of the tube to pipe component, the out-of-plane distortion generated in the x direction was primarily influenced by heat input due to the start and stop points, whereas the distortion in the z direction was influenced by time lag and welding direction. The FEM predicted distortion was compared with experimental measurements and the mechanism of out-of-plane distortion was confirmed.
文摘The oil steel pipe in the petroleum industry is very important for its high price, large consumption volume and great effect on the development of petroleum industry. The oil steel pipe mainly includes oil well pipe (drill pipe, drill collar, casing and tubing etc.) and oil-gas transportation pipe. This paper is an attempt to make a comprehensive review on the current situation and prospect of the oil steel pipe in China, presenting the past , today and future of the China oil pipe. The first section is a historical review of the China oil pipe. The developing course and progress of the oil steel pipe products are presented. The second section is about the current situation of the China oil pipe. The general situation of the China’s steel pipe corporation and their products types, capability, etc. is introduced. The third section is about the prospect of the China oil pipe. This part mainly describes the new product research and development in China steel pipe corporations, which are facing more and more strict technical requirements of the petroleum industry in oil pipe, and reveals the prosperity of China’s steel pipe corporations.
基金Projects(50436010, 50705031) supported by the National Natural Science Foundation of ChinaProjects(07118064, 8151064101000058) supported by the Natural Science Foundation of Guangdong Province, China
文摘The quality of micro heat pipe(MHP) is strongly affected by sealing technology. Based on the analysis of requirements of sealing technology, a cold welding technology was presented to seal MHP. In the cold welding process, compression force was used to flatten micro groove copper(MGC) tube. Then the bonding of MGC tube was reached because of intensively plastic deformation of MGC tube under pressure. It is found that the plastic deformation area of the cold welding of MGC tube can be divided into three sections. The deformation of micro grooves in each section was investigated; the influence of the dimensions of cylindrical heads on the weld joint shape and strength was studied; and a comparison between smooth copper tube and MGC tube was done. The results show that a groove compression stage exists in the cold welding of MGC tube besides a flattened stage and a melting stage.
基金supported by National Natural Science Foundation of China(Grant Nos. 50975096, 51175186)Guangdong Provincial Natural Science Foundation of China(Grant No. S2011010002225)+1 种基金Guangdong Provincial Science and Technology Planning Project of China(GrantNos. 2010A080802009, 2010A011300022, 2011B040300020)Fundamental Research Funds for the Central Universities of China(GrantNo.2012ZZ0053)
文摘The collapse of thin-walled micro-grooved heat pipes is a common phenomenon in the tube flattening process, which seriously influences the heat transfer performance and appearance of heat pipe. At present, there is no other better method to solve this problem. A new method by heating the heat pipe is proposed to eliminate the collapse during the flattening process. The effectiveness of the proposed method is investigated through a theoretical model, a finite element(FE) analysis, and experimental method. Firstly, A theoretical model based on a deformation model of six plastic hinges and the Antoine equation of the working fluid is established to analyze the collapse of thin walls at different temperatures. Then, the FE simulation and experiments of flattening process at different temperatures are carried out and compared with theoretical model. Finally, the FE model is followed to study the loads of the plates at different temperatures and heights of flattened heat pipes. The results of the theoretical model conform to those of the FE simulation and experiments in the flattened zone. The collapse occurs at room temperature. As the temperature increases, the collapse decreases and finally disappears at approximately 130 ℃ for various heights of flattened heat pipes. The loads of the moving plate increase as the temperature increases. Thus, the reasonable temperature for eliminating the collapse and reducing the load is approximately 130℃. The advantage of the proposed method is that the collapse is reduced or eliminated by means of the thermal deformation characteristic of heat pipe itself instead of by external support. As a result, the heat transfer efficiency of heat pipe is raised.