On the basis of Hamilton principle. the equation of sonlid-liquid coupling vibration of pipe conveying fluid is deduced. An asymmetrical sonlid-liquid coupling damp matrix and a symmetrical solid-liquid coupling Sti...On the basis of Hamilton principle. the equation of sonlid-liquid coupling vibration of pipe conveying fluid is deduced. An asymmetrical sonlid-liquid coupling damp matrix and a symmetrical solid-liquid coupling Stiffness matrix are obtained. Using QR method , pipe’s nature frequencies are calculated. The curves of the first four orders of natural frequency-flow velocity of pipe waw given .The influence of flowing velocity ,pressure, solid-liquid coupling damp and solid-liquid coupling stiffness on natural frequency are discussed respectively.The dynamic respondence of the pipes for stepload with different flow velocity are calculated by Newmark method .It is found that,with the flow velocity increased, the nature frequency of the pipes reduced, increased,reduced again and so on.展开更多
The effect of various process variables on the law of metal flow for semi-solid rolling 60Si2Mn was studied by finite element method. Semi-solid 60Si2Mn can be described as compressible rigid visco-plastic porous mate...The effect of various process variables on the law of metal flow for semi-solid rolling 60Si2Mn was studied by finite element method. Semi-solid 60Si2Mn can be described as compressible rigid visco-plastic porous material saturated with liquid. In terms of ther-mo-mechanical coupling condition, the distributions of stress, velocity and temperature were studied using software MARC. The simulation results show that the rigid visco-plastic model can accurately describe the semi-solid 60Si2Mn rolling process. The great deformation can achieve completely in view of low flow stress of semi-solid slurry.展开更多
This paper employs the integral-averaged method of thickness to approximate the periodical flows in a piezoelectric micropump, with a shallow water equation including nonlinearity and viscous damp presented to charact...This paper employs the integral-averaged method of thickness to approximate the periodical flows in a piezoelectric micropump, with a shallow water equation including nonlinearity and viscous damp presented to characterize the flows in micropump. The finite element method is used to obtain a matrix equation of fluid pressure. The fluid pressure equation is combined with the vibration equation of a silicon diaphragm to construct a liquid-solid coupled equation for reflecting the interaction between solid diaphragm and fluid motion in a micropump. Numerical results of a mode analysis of the coupled system indicate that the natural frequencies of the coupled system are much lower than those of the non-coupled system. The influence of additional mass and viscous damp of fluid on the natural frequencies of the coupled system is more significant as the pump thickness is small. It is found that the vibration shape functions of silicon diaphragm of the coupled system are almost the same as those of the non-coupled system. This paper also gives the first-order amplitude-frequency relationship of the silicon diaphragm, which is necessary for the flow-rate-frequency analysis of a micropump.展开更多
This paper addresses tensile shock physics in thermoviscoelastic (TVE) solids without memory. The mathematical model is derived using conservation and balance laws (CBL) of classical continuum mechanics (CCM), incorpo...This paper addresses tensile shock physics in thermoviscoelastic (TVE) solids without memory. The mathematical model is derived using conservation and balance laws (CBL) of classical continuum mechanics (CCM), incorporating the contravariant second Piola-Kirchhoff stress tensor, the covariant Green’s strain tensor, and its rates up to order n. This mathematical model permits the study of finite deformation and finite strain compressible deformation physics with an ordered rate dissipation mechanism. Constitutive theories are derived using conjugate pairs in entropy inequality and the representation theorem. The resulting mathematical model is both thermodynamically and mathematically consistent and has closure. The solution of the initial value problems (IVPs) describing evolutions is obtained using a variationally consistent space-time coupled finite element method, derived using space-time residual functional in which the local approximations are in hpk higher-order scalar product spaces. This permits accurate description problem physics over the discretization and also permits precise a posteriori computation of the space-time residual functional, an accurate measure of the accuracy of the computed solution. Model problem studies are presented to demonstrate tensile shock formation, propagation, reflection, and interaction. A unique feature of this research is that tensile shocks can only exist in solid matter, as their existence requires a medium to be elastic (presence of strain), which is only possible in a solid medium. In tensile shock physics, a decrease in the density of the medium caused by tensile waves leads to shock formation ahead of the wave. In contrast, in compressive shocks, an increase in density and the corresponding compressive waves result in the formation of compression shocks behind of the wave. Although these are two similar phenomena, they are inherently different in nature. To our knowledge, this work has not been reported in the published literature.展开更多
The vibration and control of pipes conveying fluid is studied. The solid-liquid coupling vibration equations of the pipe conveying fluid are deduced by Hamilton principle.The direct velocity feedback is used to contro...The vibration and control of pipes conveying fluid is studied. The solid-liquid coupling vibration equations of the pipe conveying fluid are deduced by Hamilton principle.The direct velocity feedback is used to control the pipe vibration. The whip response and control are discussed.展开更多
In this paper,based upon the characteristics of elastic modal combination of large solid bundled launch vehicles,the finite element theory is used to describe the complex elastic vibration of a solid bundled launch ve...In this paper,based upon the characteristics of elastic modal combination of large solid bundled launch vehicles,the finite element theory is used to describe the complex elastic vibration of a solid bundled launch vehicle,and a new three-channel unified elastic vibration equation was established.The elastic vibration equation can reflect the coupling between channels and between boosters and core stage.Some issues need consideration in the theoretical derivation,an engineering application was proposed,and the elastic vibration model was verified.The results of the theoretical derivation and simulation show that the elastic vibration equation of a solid bundled launch vehicle established in the paper is correct and can meet the needs for the engineering application.展开更多
文摘On the basis of Hamilton principle. the equation of sonlid-liquid coupling vibration of pipe conveying fluid is deduced. An asymmetrical sonlid-liquid coupling damp matrix and a symmetrical solid-liquid coupling Stiffness matrix are obtained. Using QR method , pipe’s nature frequencies are calculated. The curves of the first four orders of natural frequency-flow velocity of pipe waw given .The influence of flowing velocity ,pressure, solid-liquid coupling damp and solid-liquid coupling stiffness on natural frequency are discussed respectively.The dynamic respondence of the pipes for stepload with different flow velocity are calculated by Newmark method .It is found that,with the flow velocity increased, the nature frequency of the pipes reduced, increased,reduced again and so on.
基金the National Natural Science Foundation of China (No.59995440).
文摘The effect of various process variables on the law of metal flow for semi-solid rolling 60Si2Mn was studied by finite element method. Semi-solid 60Si2Mn can be described as compressible rigid visco-plastic porous material saturated with liquid. In terms of ther-mo-mechanical coupling condition, the distributions of stress, velocity and temperature were studied using software MARC. The simulation results show that the rigid visco-plastic model can accurately describe the semi-solid 60Si2Mn rolling process. The great deformation can achieve completely in view of low flow stress of semi-solid slurry.
基金Project supported by the National Natural Science Foundation of China (No. 10472036).
文摘This paper employs the integral-averaged method of thickness to approximate the periodical flows in a piezoelectric micropump, with a shallow water equation including nonlinearity and viscous damp presented to characterize the flows in micropump. The finite element method is used to obtain a matrix equation of fluid pressure. The fluid pressure equation is combined with the vibration equation of a silicon diaphragm to construct a liquid-solid coupled equation for reflecting the interaction between solid diaphragm and fluid motion in a micropump. Numerical results of a mode analysis of the coupled system indicate that the natural frequencies of the coupled system are much lower than those of the non-coupled system. The influence of additional mass and viscous damp of fluid on the natural frequencies of the coupled system is more significant as the pump thickness is small. It is found that the vibration shape functions of silicon diaphragm of the coupled system are almost the same as those of the non-coupled system. This paper also gives the first-order amplitude-frequency relationship of the silicon diaphragm, which is necessary for the flow-rate-frequency analysis of a micropump.
文摘This paper addresses tensile shock physics in thermoviscoelastic (TVE) solids without memory. The mathematical model is derived using conservation and balance laws (CBL) of classical continuum mechanics (CCM), incorporating the contravariant second Piola-Kirchhoff stress tensor, the covariant Green’s strain tensor, and its rates up to order n. This mathematical model permits the study of finite deformation and finite strain compressible deformation physics with an ordered rate dissipation mechanism. Constitutive theories are derived using conjugate pairs in entropy inequality and the representation theorem. The resulting mathematical model is both thermodynamically and mathematically consistent and has closure. The solution of the initial value problems (IVPs) describing evolutions is obtained using a variationally consistent space-time coupled finite element method, derived using space-time residual functional in which the local approximations are in hpk higher-order scalar product spaces. This permits accurate description problem physics over the discretization and also permits precise a posteriori computation of the space-time residual functional, an accurate measure of the accuracy of the computed solution. Model problem studies are presented to demonstrate tensile shock formation, propagation, reflection, and interaction. A unique feature of this research is that tensile shocks can only exist in solid matter, as their existence requires a medium to be elastic (presence of strain), which is only possible in a solid medium. In tensile shock physics, a decrease in the density of the medium caused by tensile waves leads to shock formation ahead of the wave. In contrast, in compressive shocks, an increase in density and the corresponding compressive waves result in the formation of compression shocks behind of the wave. Although these are two similar phenomena, they are inherently different in nature. To our knowledge, this work has not been reported in the published literature.
文摘The vibration and control of pipes conveying fluid is studied. The solid-liquid coupling vibration equations of the pipe conveying fluid are deduced by Hamilton principle.The direct velocity feedback is used to control the pipe vibration. The whip response and control are discussed.
文摘In this paper,based upon the characteristics of elastic modal combination of large solid bundled launch vehicles,the finite element theory is used to describe the complex elastic vibration of a solid bundled launch vehicle,and a new three-channel unified elastic vibration equation was established.The elastic vibration equation can reflect the coupling between channels and between boosters and core stage.Some issues need consideration in the theoretical derivation,an engineering application was proposed,and the elastic vibration model was verified.The results of the theoretical derivation and simulation show that the elastic vibration equation of a solid bundled launch vehicle established in the paper is correct and can meet the needs for the engineering application.