Al<sub>2</sub>S<sub>3</sub>/MoS<sub>2</sub> nanocomposite has been synthesized through electrochemical method and characterized by UV-Visible spectroscopy, XRD, SEM and EDAX data. U...Al<sub>2</sub>S<sub>3</sub>/MoS<sub>2</sub> nanocomposite has been synthesized through electrochemical method and characterized by UV-Visible spectroscopy, XRD, SEM and EDAX data. UV-Visible spectroscopy measurements reveal that the Al<sub>2</sub>S<sub>3</sub>/MoS<sub>2</sub> nanocomposite has maximum absorption at 353.04 nm and this peak position reflects the band gap of particles and it is found to be 2.51 eV which was calculated using Tauc plot. X-Ray diffraction (XRD) reveals crystaline size to be 49.85 nm which was calculated using Williamson-Hall (W-H) plot method. Photocatalytic degradation of acetic acid, chloroacetic acid and trichloroacetic acid has been studied by volumetric method using NaOH solution. Photocatalytic degradation of chloroacetic acid and acetic acid follows first order kinetics. The photodegradation efficiency for Al<sub>2</sub>S<sub>3</sub>/MoS<sub>2</sub> nanocomposite was found to be ≈97.8%. A Taft linear free energy relationship is noted for the catalysed reaction with ρ* = 0.233 and indicating electron withdrawing groups enhance the rate. An isokinetic relation is observed with β = 358 K indicating that enthalpy factor controls the reaction rate. The result of this paper suggests the possibility of degradation of organic compounds, industrial effluants and toxic organic compounds by photodegradation process by ecofriendly Al<sub>2</sub>S<sub>3</sub>/ MoS<sub>2</sub>. The antibacterial activity of Al<sub>2</sub>S<sub>3</sub>/MoS<sub>2</sub> nanocomposite was investigated. These particles were shown to have an effective bactericide.展开更多
Objective:To reveal the antibacterial activity of sequentially extracted different cold organic solvent extracts of fruits,flowers and leaves of Lawsonia inermis(L against)some pathogenic bacteria.Methods:Powders of f...Objective:To reveal the antibacterial activity of sequentially extracted different cold organic solvent extracts of fruits,flowers and leaves of Lawsonia inermis(L against)some pathogenic bacteria.Methods:Powders of fruits,flowers and leaves of L inermis were continuously extracted with dichloromethane(DCM),ethyl acetate and ethanol at ambient temperature.The dried extracts were prepared into different concentrations and tested for antibacterial activity by agar well diffusion method,and also the extracts were tested to detennine the available phytochemicals.Results:Except DCM extract of flower all other test extracts revealed inhibitory effect on all tested bacteria and their inhibitory effect differed significantly(P<0.05).The highest inhibitory effect was showed by ethyl acetate extract of flower against Staphylococcus aureus(S.aureus)and Pseudomonas aeruginosa(P.aeruginosa),and ethyl acetate extract of fruit on Escherichia coli(E.coli)and Bacillus subtilis(6.subtilis).The ethyl acetate and ethanol extracts of flower,fruit and leaf expressed inhibition even at 1 mg/100μl against all test bacteria.Among the tested phytochemicals flavonoids were detected in all test extracts except DCM extract of flower.Conclusions:The study demonstrated that the ethyl acetate and ethanol extracts of fruit and flower of L inermis are potentially better source of antibacterial agents compared to leaf extracts of respective solvents.展开更多
TiO 2 nanometer thin films with photocatalytic antibacterial activity were prepared by the sol-gel method on fused quartz and soda lime glass precoated with a SiO 2 layer.The thin films were characterized by X-ray p...TiO 2 nanometer thin films with photocatalytic antibacterial activity were prepared by the sol-gel method on fused quartz and soda lime glass precoated with a SiO 2 layer.The thin films were characterized by X-ray photoelectron spectroscopy (XPS),scanning electron microscopy (SEM),and X-ray diffraction (XRD).The results show that sodium and calcium diffusion into nascent TiO 2 film is effectively retarded by the SiO 2 layer precoated on the soda lime glass.The antibacterial activity of the films was determined.The crystalline of TiO 2 nanometer thin film has important effects on the antibacterial activity of the film.展开更多
The nano-TiO_2 particles were prepared by liquid hydrolysis method and characterized using XRD. Its antibacterial activity against two representative bacterial, Escherichia eoli and Staphylococcus aureus, was also stu...The nano-TiO_2 particles were prepared by liquid hydrolysis method and characterized using XRD. Its antibacterial activity against two representative bacterial, Escherichia eoli and Staphylococcus aureus, was also studied. The experimental results showed that the nano-TiO_2 caleinated at 600-700℃ contained the obvious anatase phase and exerted exeeUent antibacterial activity. The feature of antibacterial activity of nano- TiO_2 was non-strains specificity and exerted best antibacterial activity at concentration of 0.8 g/L.展开更多
[Objective] The paper was to investigate in vitro antibacterial effect of alkaline hydrogen water on Escherichia coli,Salmonella,Pseudomonas aeruginosa and Staphylococcus aureus.[Method] With Cortex cinnamomi extract...[Objective] The paper was to investigate in vitro antibacterial effect of alkaline hydrogen water on Escherichia coli,Salmonella,Pseudomonas aeruginosa and Staphylococcus aureus.[Method] With Cortex cinnamomi extract(1 g/m L) and pure water as the control,the minimal inhibitory concentrations(MIC) against four kinds of common pathogenic microorganisms were tested through microdilution method.[Result] When the alkaline hydrogen water was diluted to 1/8 times of the original concentration,it had significant antibacterial effects on four kinds of common mi-croorganisms with the concentration of 1.5 ×10^5 CFU/m L,which had equivalent effect with C.cinnamomi extract group.[Conclusion]The alkaline hydrogen water has remarkable antibacterial effects on the four kinds of common microorganisms,which may provide a new important way for pre-venting disease occurrence and reducing the harms of pathogenic microorganisms.展开更多
The work is dedicated to develop a one-step eco-friendly method to prepare antibacterial polyethylene terephthalate(PET).We report a one-step eco-friendly method to manufacture antibacterial PET via on-line amination ...The work is dedicated to develop a one-step eco-friendly method to prepare antibacterial polyethylene terephthalate(PET).We report a one-step eco-friendly method to manufacture antibacterial PET via on-line amination reaction by melt coextrusion.Beside evenly mixing of poly(hexamethylene guanidine)(PHMG)and PET in the melt coextrusion procedure,the amination reaction also occurred between PHMG and PET under high temperature(230-270℃).The antibacterial ability of composite PET showed obvious PHMG concentration dependence,and antibacterial activity reached more than 99%when PHMG content was 2.5 wt%.Moreover,LIVE/DEAD fluorescence test further confirmed that the composite PET could kill bacteria quickly and efiectively(within 30 min);while negligible cytotoxicity was observed to HSF and HUVEC cells.Onestep eco-friendly fabrication of composite antibacterial PET was accomplished by on-line melt coextrusion.The composite antibacterial PET has potential use in multiple fields to combat with pathogenic including textiles,packaging materials,decoration materials and biomedical devices,etc.展开更多
Antibacterial activities of various spherical zinc oxide nanoparticles and nano special morphological structures including quantum dots, nanorod arrays, nanoporous shapes and needle-like crystals had been investigated...Antibacterial activities of various spherical zinc oxide nanoparticles and nano special morphological structures including quantum dots, nanorod arrays, nanoporous shapes and needle-like crystals had been investigated as new nanomedicine compounds. Also antibacterial activity based on minimal inhibitory concentration and the growth inhibitory zone (well method) was evaluated. ZnO nanostructures were fabricated by novel hydrolysis sol-gel-hydrothermal process followed with rapid quenching as new technique using glycerine, vegetable fatty esters such as coconut, sunflower and Lauric alcohol ethoxylated as organic templates soluble in eco-friendly nanofluids. The results showed that Bacillus anthracis and Pseudomonas aerogenes were extremely sensitive to treatment with unique ZnO nanostructured. Their growth inhibitory zone presented 30 mm and 25 mm inhibition zone with better inhibitory effect compared to the Gentamicin antibiotic standard. ZnO nanostructures had also been indicated to have a wide range of antibacterial activities against both Gram-positive and Gram-negative bacteria especially more effective on (gr+) species using the growth inhibitory zone. We could design and make significant formulations of fatty acids and esters-capped ZnO quantum dots nanofluids which created high promising agents for controlling Anthrax, Staphylococcus epidermidis and their influences in antimicrobial properties with low cost for future.展开更多
The Manganese doped zinc sulfide nanoparticles of the cubic zinc blende structure with the average crystallite size of about 3.56 nm were synthesized using a coprecipitation method using Thioglycolic Acid as an extern...The Manganese doped zinc sulfide nanoparticles of the cubic zinc blende structure with the average crystallite size of about 3.56 nm were synthesized using a coprecipitation method using Thioglycolic Acid as an external capping agent for surface modification. The ZnS:Mn<sup>2+</sup> nanoparticles of diameter 3.56 nm were manufactured through using inexpensive precursors in an efficient and eco-friendly way. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy are used to examine the structure, morphology and chemical composition of the nanoparticles. The antimicrobial activity of (ZnS:Mn<sup>2+</sup>) nanocrystals was investigated by measuring the diameter of inhibition zone using well diffusion mechanism versus two various bacterial strains. The technique of microorganism inactivation was considered as sorts-dependent. Bacillus subtilis showed the largest antibacterial sensitivity (35 mm) to ZnS: Mn<sup>2+</sup> nanoparticles at a concentration (50 mM) whereas Escherichia coli offered maximum zone of inhibition (20 mm) at the same concentration. In this study, the results indicated that ZnS:Mn<sup>2+</sup> nanoparticles were found to have significant antibacterial activity against Gram-negative (E. coli) and Gram-positive (Bacillus subtilis) bacteria.展开更多
文摘Al<sub>2</sub>S<sub>3</sub>/MoS<sub>2</sub> nanocomposite has been synthesized through electrochemical method and characterized by UV-Visible spectroscopy, XRD, SEM and EDAX data. UV-Visible spectroscopy measurements reveal that the Al<sub>2</sub>S<sub>3</sub>/MoS<sub>2</sub> nanocomposite has maximum absorption at 353.04 nm and this peak position reflects the band gap of particles and it is found to be 2.51 eV which was calculated using Tauc plot. X-Ray diffraction (XRD) reveals crystaline size to be 49.85 nm which was calculated using Williamson-Hall (W-H) plot method. Photocatalytic degradation of acetic acid, chloroacetic acid and trichloroacetic acid has been studied by volumetric method using NaOH solution. Photocatalytic degradation of chloroacetic acid and acetic acid follows first order kinetics. The photodegradation efficiency for Al<sub>2</sub>S<sub>3</sub>/MoS<sub>2</sub> nanocomposite was found to be ≈97.8%. A Taft linear free energy relationship is noted for the catalysed reaction with ρ* = 0.233 and indicating electron withdrawing groups enhance the rate. An isokinetic relation is observed with β = 358 K indicating that enthalpy factor controls the reaction rate. The result of this paper suggests the possibility of degradation of organic compounds, industrial effluants and toxic organic compounds by photodegradation process by ecofriendly Al<sub>2</sub>S<sub>3</sub>/ MoS<sub>2</sub>. The antibacterial activity of Al<sub>2</sub>S<sub>3</sub>/MoS<sub>2</sub> nanocomposite was investigated. These particles were shown to have an effective bactericide.
基金Supported by Ministry of Higher EducationSri Lanka for providing the financial assistance for the work as payment of research allowance in accordance with circular no1/2011
文摘Objective:To reveal the antibacterial activity of sequentially extracted different cold organic solvent extracts of fruits,flowers and leaves of Lawsonia inermis(L against)some pathogenic bacteria.Methods:Powders of fruits,flowers and leaves of L inermis were continuously extracted with dichloromethane(DCM),ethyl acetate and ethanol at ambient temperature.The dried extracts were prepared into different concentrations and tested for antibacterial activity by agar well diffusion method,and also the extracts were tested to detennine the available phytochemicals.Results:Except DCM extract of flower all other test extracts revealed inhibitory effect on all tested bacteria and their inhibitory effect differed significantly(P<0.05).The highest inhibitory effect was showed by ethyl acetate extract of flower against Staphylococcus aureus(S.aureus)and Pseudomonas aeruginosa(P.aeruginosa),and ethyl acetate extract of fruit on Escherichia coli(E.coli)and Bacillus subtilis(6.subtilis).The ethyl acetate and ethanol extracts of flower,fruit and leaf expressed inhibition even at 1 mg/100μl against all test bacteria.Among the tested phytochemicals flavonoids were detected in all test extracts except DCM extract of flower.Conclusions:The study demonstrated that the ethyl acetate and ethanol extracts of fruit and flower of L inermis are potentially better source of antibacterial agents compared to leaf extracts of respective solvents.
文摘TiO 2 nanometer thin films with photocatalytic antibacterial activity were prepared by the sol-gel method on fused quartz and soda lime glass precoated with a SiO 2 layer.The thin films were characterized by X-ray photoelectron spectroscopy (XPS),scanning electron microscopy (SEM),and X-ray diffraction (XRD).The results show that sodium and calcium diffusion into nascent TiO 2 film is effectively retarded by the SiO 2 layer precoated on the soda lime glass.The antibacterial activity of the films was determined.The crystalline of TiO 2 nanometer thin film has important effects on the antibacterial activity of the film.
基金Funded by the Research Fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province(No.AE201037the Foundation for Talent Recruitment of Yancheng Institute of Technology(No.XKR2011007)
文摘The nano-TiO_2 particles were prepared by liquid hydrolysis method and characterized using XRD. Its antibacterial activity against two representative bacterial, Escherichia eoli and Staphylococcus aureus, was also studied. The experimental results showed that the nano-TiO_2 caleinated at 600-700℃ contained the obvious anatase phase and exerted exeeUent antibacterial activity. The feature of antibacterial activity of nano- TiO_2 was non-strains specificity and exerted best antibacterial activity at concentration of 0.8 g/L.
文摘[Objective] The paper was to investigate in vitro antibacterial effect of alkaline hydrogen water on Escherichia coli,Salmonella,Pseudomonas aeruginosa and Staphylococcus aureus.[Method] With Cortex cinnamomi extract(1 g/m L) and pure water as the control,the minimal inhibitory concentrations(MIC) against four kinds of common pathogenic microorganisms were tested through microdilution method.[Result] When the alkaline hydrogen water was diluted to 1/8 times of the original concentration,it had significant antibacterial effects on four kinds of common mi-croorganisms with the concentration of 1.5 ×10^5 CFU/m L,which had equivalent effect with C.cinnamomi extract group.[Conclusion]The alkaline hydrogen water has remarkable antibacterial effects on the four kinds of common microorganisms,which may provide a new important way for pre-venting disease occurrence and reducing the harms of pathogenic microorganisms.
基金Funded by the National Natural Science Foundation of China(No.51703169)Key Program of Science and Technology of Jieyang City(No.2019016)Key Research and Development Program of Shandong Province of China(No.2019JZZY010338)。
文摘The work is dedicated to develop a one-step eco-friendly method to prepare antibacterial polyethylene terephthalate(PET).We report a one-step eco-friendly method to manufacture antibacterial PET via on-line amination reaction by melt coextrusion.Beside evenly mixing of poly(hexamethylene guanidine)(PHMG)and PET in the melt coextrusion procedure,the amination reaction also occurred between PHMG and PET under high temperature(230-270℃).The antibacterial ability of composite PET showed obvious PHMG concentration dependence,and antibacterial activity reached more than 99%when PHMG content was 2.5 wt%.Moreover,LIVE/DEAD fluorescence test further confirmed that the composite PET could kill bacteria quickly and efiectively(within 30 min);while negligible cytotoxicity was observed to HSF and HUVEC cells.Onestep eco-friendly fabrication of composite antibacterial PET was accomplished by on-line melt coextrusion.The composite antibacterial PET has potential use in multiple fields to combat with pathogenic including textiles,packaging materials,decoration materials and biomedical devices,etc.
文摘Antibacterial activities of various spherical zinc oxide nanoparticles and nano special morphological structures including quantum dots, nanorod arrays, nanoporous shapes and needle-like crystals had been investigated as new nanomedicine compounds. Also antibacterial activity based on minimal inhibitory concentration and the growth inhibitory zone (well method) was evaluated. ZnO nanostructures were fabricated by novel hydrolysis sol-gel-hydrothermal process followed with rapid quenching as new technique using glycerine, vegetable fatty esters such as coconut, sunflower and Lauric alcohol ethoxylated as organic templates soluble in eco-friendly nanofluids. The results showed that Bacillus anthracis and Pseudomonas aerogenes were extremely sensitive to treatment with unique ZnO nanostructured. Their growth inhibitory zone presented 30 mm and 25 mm inhibition zone with better inhibitory effect compared to the Gentamicin antibiotic standard. ZnO nanostructures had also been indicated to have a wide range of antibacterial activities against both Gram-positive and Gram-negative bacteria especially more effective on (gr+) species using the growth inhibitory zone. We could design and make significant formulations of fatty acids and esters-capped ZnO quantum dots nanofluids which created high promising agents for controlling Anthrax, Staphylococcus epidermidis and their influences in antimicrobial properties with low cost for future.
文摘The Manganese doped zinc sulfide nanoparticles of the cubic zinc blende structure with the average crystallite size of about 3.56 nm were synthesized using a coprecipitation method using Thioglycolic Acid as an external capping agent for surface modification. The ZnS:Mn<sup>2+</sup> nanoparticles of diameter 3.56 nm were manufactured through using inexpensive precursors in an efficient and eco-friendly way. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy are used to examine the structure, morphology and chemical composition of the nanoparticles. The antimicrobial activity of (ZnS:Mn<sup>2+</sup>) nanocrystals was investigated by measuring the diameter of inhibition zone using well diffusion mechanism versus two various bacterial strains. The technique of microorganism inactivation was considered as sorts-dependent. Bacillus subtilis showed the largest antibacterial sensitivity (35 mm) to ZnS: Mn<sup>2+</sup> nanoparticles at a concentration (50 mM) whereas Escherichia coli offered maximum zone of inhibition (20 mm) at the same concentration. In this study, the results indicated that ZnS:Mn<sup>2+</sup> nanoparticles were found to have significant antibacterial activity against Gram-negative (E. coli) and Gram-positive (Bacillus subtilis) bacteria.