期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Frozen curtain characteristics during excavation of submerged shallow tunnel using Freeze-Sealing Pipe-Roof method 被引量:2
1
作者 Ye Niu ZeQun Hong +1 位作者 Jun Zhang Lei Han 《Research in Cold and Arid Regions》 CSCD 2022年第4期267-273,共7页
The Freeze-Sealing Pipe-Roof(FSPR)method,which has been applied for the first time in the Gongbei Tunnel of the Hong Kong-Zhuhai-Macao Bridge,is a new approach of tunnel pre-support that allows flexible adjustment of ... The Freeze-Sealing Pipe-Roof(FSPR)method,which has been applied for the first time in the Gongbei Tunnel of the Hong Kong-Zhuhai-Macao Bridge,is a new approach of tunnel pre-support that allows flexible adjustment of freeze tube arrangement and can be adapted to different environmental conditions.When the FSPR method is used to construct shallow burial submerged tunnels,the frozen wall to hold back groundwater during excavation will be weakened by air and water flows inside and outside the tunnel,and its waterproof performance needs to be further investigated.In this paper,a two-dimensional numerical model of the temperature field considering excavation and moving water boundary is established based on the preliminary design scheme and in-situ conditions and is used to analyze the variation in frozen curtain properties with various active freezing times during excavation.The results show that excavation has a weakening effect on both sides of the frozen wall,with a greater effect on the inner side,and a positive temperature appears in the local area inside the jacked pipe.The concrete fill in the jacked pipe obviously improves the freezing efficiency,and the tunnel excavation after 60 days of active freezing in the interval filling mode can ensure that the frozen soil thickness at the thinnest segment exceeds 2 m,i.e.,the design requirement.In practice,the active freezing time can be extended appropriately to reduce the influence of river water flow above the tunnel.The study serves as a technical reference for the design and implementation of similar projects. 展开更多
关键词 Freeze-sealing pipe-roof method Submerged tunnel Soil excavation Temperature field Frozen wall thickness
下载PDF
Pre-constructed SEI on graphite-based interface enables long cycle stability for dual ion sodium batteries
2
作者 Bao Li Bobo Cao +4 位作者 Xinxin Zhou Zhuangzhuang Zhang Dongmei Dai Mengmin Jia Dai-Huo Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第7期323-326,共4页
Lithium batteries have been widely used in all over the world for its high energy density, long-term cycle stability. While the resources of lithium metal and transition metal are limited, which restrict their applica... Lithium batteries have been widely used in all over the world for its high energy density, long-term cycle stability. While the resources of lithium metal and transition metal are limited, which restrict their applications in the grid energy storage. Dual ion sodium batteries(DISBs) possess higher energy density,especially owning high power density for its higher operating voltage(> 4.5 V). Nevertheless, the poor oxidation tolerance of carbonate electrolyte and the co-intercalation of solvents accompanied with anions are main obstacles to make the DISBs commercialization. Herein, a physical barrier(artificial SEI film) is pre-constructed in the Na||graphite batteries to solve these thorny problems. With the CSMG(covered SEI on modified graphite), batteries deliver higher capacity 40 mAh/g even under the current density of 300 mA/g and the capacity retention maintains very well after 100 cycles at a high operating voltage.Moreover, the function mechanism was revealed by in-situ XRD, demonstrating that the pre-constructed SEI can effectively suppress the irreversible phase transition and exfoliation of graphite, resulting from the co-intercalation of anions. Additionally, the work voltage windows of carbonate electrolyte are significantly broadened by establishing electrode/electrolyte interphase. This method opens up an avenue for the practical application of DISBs on the grid energy storage and other fields. 展开更多
关键词 Dual ion sodium batteries Carbonate electrolyte High voltage Anion co-intercalation pre-constructed SEI
原文传递
Construction of shallow buried large-span metro stations using the small pipe roof-beam method
3
作者 Qian BAI Wen ZHAO +5 位作者 Yingda ZHANG Pengjiao JIA Xiangrui MENG Bo LU Xin WANG Dazeng SUN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第1期122-136,共15页
In relation to the Shifu Road Station project on Line 4 of the Shenyang Metro in China,a small-pipe roof-beam method for constructing subway stations is presented.First,a numerical simulation was performed to optimize... In relation to the Shifu Road Station project on Line 4 of the Shenyang Metro in China,a small-pipe roof-beam method for constructing subway stations is presented.First,a numerical simulation was performed to optimize the supporting parameters of the proposed method and determine the design scheme.Subsequently,the deformation of the pipe roof and surface settlement during the construction process were investigated.Finally,the surface settlement attributed to the excavation was studied through field monitoring,and the proposed method was compared with other methods.The results show that an increase in the pipe-roof spacing has little effect on the surface settlement and piperoof deformation.The bearing capacity of the pipe roof can be efficiently utilized once the flexural stiffness reaches 2EI,and the flexural stiffness is not the dominant factor controlling the deformation.The essential stages in controlling surface settlement are the excavations of the transverse pilot tunnels and the soil between them.The final settlement value of the ground was 24.1 mm,resulting in a reduction in the construction period by at least five months while satisfying the control requirements. 展开更多
关键词 subway station pipe-roof method surface settlement SIMULATION on-site monitoring
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部