With the popularization of wireless multimedia communications,the wireless traffic is predicated to be increased more than 1000time in the next decade.Some new technologies,e.g.,massive multi.input multi.output antenn...With the popularization of wireless multimedia communications,the wireless traffic is predicated to be increased more than 1000time in the next decade.Some new technologies,e.g.,massive multi.input multi.output antennas,millimeter wave and small展开更多
This paper relates to an advanced open mobile communication system and method of integrating the mobile communications, wireless access systems and wired communications into one common platform architecture for China&...This paper relates to an advanced open mobile communication system and method of integrating the mobile communications, wireless access systems and wired communications into one common platform architecture for China's 4th generation mobile communications, supporting costeffective broadband voice, data and video services in wireless, mobile and wired environment with one single integrated mobile terminal device. The paper includes new architecture in the integrated mobile device and converged network access, and minimum modifi cation in the existing mobile telecommunication infrastructures. This paper introduces the long-term evolution strategy for China's TDD system platform towards China's future 4G mobile communications.展开更多
A new reliability evaluation measure, global clustering reliability (GCR), is proposed. Firstly, the common measures used in invulnerability and survivability evaluation of mobile communication networks are discussed,...A new reliability evaluation measure, global clustering reliability (GCR), is proposed. Firstly, the common measures used in invulnerability and survivability evaluation of mobile communication networks are discussed, and the shortcomings of these measures are pointed out. Then a new reliability evaluation measure, GCR, which is applicable to mobile communication networks, is proposed. And some properties and theorem about this measure are put forward. Finally, simulation calculation of reliability evaluation that uses this measure to 12 kinds of topological networks is accomplished. And the comparison between this measure and link connected factor (LCF) measure is also given. The results proved that the design of GCR is reasonable, its computation is rapid, moreover, it can take into account of invalidation of both nodes and links, and it has good physical meanings展开更多
NonorthogonalMultiple Access(NOMA)is incorporated into the wireless network systems to achieve better connectivity,spectral and energy effectiveness,higher data transfer rate,and also obtain the high quality of servic...NonorthogonalMultiple Access(NOMA)is incorporated into the wireless network systems to achieve better connectivity,spectral and energy effectiveness,higher data transfer rate,and also obtain the high quality of services(QoS).In order to improve throughput and minimum latency,aMultivariate Renkonen Regressive Weighted Preference Bootstrap Aggregation based Nonorthogonal Multiple Access(MRRWPBA-NOMA)technique is introduced for network communication.In the downlink transmission,each mobile device’s resources and their characteristics like energy,bandwidth,and trust are measured.Followed by,the Weighted Preference Bootstrap Aggregation is applied to recognize the resource-efficient mobile devices for aware data transmission by constructing the different weak hypotheses i.e.,Multivariate Renkonen Regression functions.Based on the classification,resource and trust-aware devices are selected for transmission.Simulation of the proposed MRRWPBA-NOMA technique and existing methods are carried out with different metrics such as data delivery ratio,throughput,latency,packet loss rate,and energy efficiency,signaling overhead.The simulation results assessment indicates that the proposed MRRWPBA-NOMA outperforms well than the conventional methods.展开更多
To achieve the better system performance for cooperative communication in non-orthogonal cognitive radio vehicular adhoc networks(CR-VANETs),this paper investigates the power allocation considering the interference to...To achieve the better system performance for cooperative communication in non-orthogonal cognitive radio vehicular adhoc networks(CR-VANETs),this paper investigates the power allocation considering the interference to the main system in a controllable range.We propose a three-slot one-way vehicle system model where the mobile vehicle nodes complete information interaction with the assistance of other independent nodes by borrowing the unused radio spectrum with the primary networks.The end-to-end SNR relationship in overlay and underlay cognitive communication system mode are analyzed by using two forwarding protocol,namely,decode-and-forward(DF)protocol and amplify-and-forward(AF)protocol,respectively.The system outage probability is derived and the optimal power allocation factor is obtained via seeking the minimum value of the approximation of system outage probability.The analytical results have been confirmed by means of Monte Carlo simulations.Simulation results show that the proposed system performance in terms of outage under the optimal power allocation is superior to that under the average power allocation,and is also better than that under other power allocation systems.展开更多
The sixth-generation(6G)wireless communication networks are anticipated in integrating aerial,terrestrial,and maritime communication into a robust system to accomplish trustworthy,quick,and low latency needs.It enable...The sixth-generation(6G)wireless communication networks are anticipated in integrating aerial,terrestrial,and maritime communication into a robust system to accomplish trustworthy,quick,and low latency needs.It enables to achieve maximum throughput and delay for several applications.Besides,the evolution of 6G leads to the design of unmanned aerial vehicles(UAVs)in providing inexpensive and effective solutions in various application areas such as healthcare,environment monitoring,and so on.In the UAV network,effective data collection with restricted energy capacity poses a major issue to achieving high quality network communication.It can be addressed by the use of clustering techniques forUAVs in 6G networks.In this aspect,this study develops a novel metaheuristic based energy efficient data gathering scheme for clustered unmanned aerial vehicles(MEEDG-CUAV).The proposed MEEDG-CUAV technique intends in partitioning the UAV networks into various clusters and assign a cluster head(CH)to reduce the overall energy utilization.Besides,the quantum chaotic butterfly optimization algorithm(QCBOA)with a fitness function is derived to choose CHs and construct clusters.The experimental validation of the MEEDG-CUAV technique occurs utilizing benchmark dataset and the experimental results highlighted the better performance over the other state of art techniques interms of different measures.展开更多
With the further reduction in cost and the increase in bandwidth, as well as the increase in internet applications, satellite communications are gradually shifting from a complementary role to becoming a fully integra...With the further reduction in cost and the increase in bandwidth, as well as the increase in internet applications, satellite communications are gradually shifting from a complementary role to becoming a fully integrated component of terrestrial communications networks. This paper firstly introduces the development of satellite communications, mobile communications and the global space-terrestrial integrated network. We then propose the functional architecture and network architecture for the integration of satellite communications and terrestrial mobile communications based on 5 G core networks. Finally, in order to support the network of the future, four key technologies are presented, a space-terrestrial integrated air interface design, a multi-band space-terrestrial integrated transmission waveform design, space-terrestrial integrated switching and routing technology, along with spectrum sharing and interference coordination technology, all necessary for the development of space-terrestrial integrated networks.展开更多
In this paper, we propose a clustered multihop cellular network (cMCN) architecture and study its performance using fixed channel assignment (FCA) scheme for uplink transmission. The proposed cMCN using FCA can be...In this paper, we propose a clustered multihop cellular network (cMCN) architecture and study its performance using fixed channel assignment (FCA) scheme for uplink transmission. The proposed cMCN using FCA can be applied with some reuse factors. An analytical model based on Markov chain is developed to analyze its performance and validated through computer simulation. And then, we implement direct peer-to-peer communication (DC) in cMCN by considering more reasonable conditions in practice. DC means that two calls communicate directly instead of going through base stations. The results show that cMCN with FCA can reduce the call blocking probability significantly as compared with the traditional single-hop cellular networks with FCA and can be further reduced by using DC.展开更多
Cognitive radio and cooperative communication can greatly improve the spectrum efficiency in wireless communications.We study a cognitive radio network where two secondary source terminals exchange their information w...Cognitive radio and cooperative communication can greatly improve the spectrum efficiency in wireless communications.We study a cognitive radio network where two secondary source terminals exchange their information with the assistance of a relay node under interference power constraints.In order to enhance the transmit rate and maintain fairness between two source terminals,a practical 2-phase analog network coding protocol is adopted and its optimal power allocation algorithm is proposed.Numerical results verify the superiority of the proposed algorithm over the conventional direct transmission protocol and 4-phase amplify-and-forward relay protocol.展开更多
5G is a new generation of mobile networking that aims to achieve unparalleled speed and performance. To accomplish this, three technologies, Device-to-Device communication (D2D), multi-access edge computing (MEC) and ...5G is a new generation of mobile networking that aims to achieve unparalleled speed and performance. To accomplish this, three technologies, Device-to-Device communication (D2D), multi-access edge computing (MEC) and network function virtualization (NFV) with ClickOS, have been a significant part of 5G, and this paper mainly discusses them. D2D enables direct communication between devices without the relay of base station. In 5G, a two-tier cellular network composed of traditional cellular network system and D2D is an efficient method for realizing high-speed communication. MEC unloads work from end devices and clouds platforms to widespread nodes, and connects the nodes together with outside devices and third-party providers, in order to diminish the overloading effect on any device caused by enormous applications and improve users’ quality of experience (QoE). There is also a NFV method in order to fulfill the 5G requirements. In this part, an optimized virtual machine for middle-boxes named ClickOS is introduced, and it is evaluated in several aspects. Some middle boxes are being implemented in the ClickOS and proved to have outstanding performances.展开更多
To facilitate the demand for a higher spectrum and power efficiency arising from the next generation mobile communication system, the introduction of relay-aided cooperative communication into the existing cellular in...To facilitate the demand for a higher spectrum and power efficiency arising from the next generation mobile communication system, the introduction of relay-aided cooperative communication into the existing cellular infrastructure is considered as the most practical improvement under high rate and coverage. In comparison with the legacy cellular network, relay-aided cooperative communication network enjoys relative advantages over coverage efficiency, operation cost and transmission capacity. Transmission in relay-aided cooperative system falls into three types: the three-terminal transmission model, two-hop multi-relay parallel transmission model, and multi-hop multi-relay transmission model. For the extensive perspective of relay-aided cooperative communication in application, a profound research has been carried out in communication standards such as Worldwide Interoperability for Microwave Access (WiMAX) and Wireless World Initiative New Radio (WINNER).展开更多
Cognitive emergency communication net-works can meet the requirements of large capac-ity,high density and low delay in emergency com-munications.This paper analyzes the properties of emergency users in cognitive emerg...Cognitive emergency communication net-works can meet the requirements of large capac-ity,high density and low delay in emergency com-munications.This paper analyzes the properties of emergency users in cognitive emergency communi-cation networks,designs a multi-objective optimiza-tion and proposes a novel multi-objective bacterial foraging optimization algorithm based on effective area(MOBFO-EA)to maximize the transmission rate while maximizing the lifecycle of the network.In the algorithm,the effective area is proposed to prevent the algorithm from falling into a local optimum,and the diversity and uniformity of the Pareto-optimal solu-tions distributed in the effective area are used to eval-uate the optimization algorithm.Then,the dynamic preservation is used to enhance the competitiveness of excellent individuals and the uniformity and diversity of the Pareto-optimal solutions in the effective area.Finally,the adaptive step size,adaptive moving direc-tion and inertial weight are used to shorten the search time of bacteria and accelerate the optimization con-vergence.The simulation results show that the pro-posed MOBFO-EA algorithm improves the efficiency of the Pareto-optimal solutions by approximately 55%compared with the MOPSO algorithm and by approx-imately 60%compared with the MOBFO algorithm and has the fastest and smoothest convergence.展开更多
The airspace communication network based on spacecraft has a wide range of applications in regional information enhancement and emergency communication. In this paper, a routing algorithm for congestion degree detecti...The airspace communication network based on spacecraft has a wide range of applications in regional information enhancement and emergency communication. In this paper, a routing algorithm for congestion degree detection of multipath routing (CD_AOMDV) is proposed. The method of combining the whole congestion degree detection and local congestion degree detection before service initiation is adopted. Timely and accurate judgment of the congestion degree reduced the loss rate of the hot nodes, so the average packet loss rate reduced. Simulation results show that compared with the traditional AOMDV protocol, the CD_AOMDV proposed in this paper has reduced the packet loss and improved delay performance, which is more suitable for the airspace communication network.展开更多
This article describes GIS-based models successfully developed for predicting the coverage of Cityphone cellular network,visualizing the predicted signal strength,and analyzing the field strength coverage.In order to ...This article describes GIS-based models successfully developed for predicting the coverage of Cityphone cellular network,visualizing the predicted signal strength,and analyzing the field strength coverage.In order to predict the signal coverage strength of communication network more accurately,the spatial and nonspatial databases of a mobile cellular network are combined by GIS and produce the necessary parameters.A GIS model named COST-231-Walfisch–Ikegami model(WIM)is developed for signal coverage prediction in Ho Chi Minh City.Radio-line-of-sight and nonradio-lineof-sight conditions can be determined by this model.In addition,in case of nonradio-line-of-sight conditions,average building height,building separation,building width,incident radio path,and road orientation with respect to the direct radio path were obtained using GIS.Road orientation loss,multiscreen diffraction loss,and shadowing gain were predicted more accurate by this model.The scale of maps in the experiment was 1:2000 and the average of floor height was 3 m because there were no exact building height measurements.Statistical results show that the path loss predicted by the COST 231 WIM overcame the real path loss of each cell station.And this method can be used for signal coverage prediction of mobile cellular network in urban areas.Compared to the current situation with the Ho Chi Minh City Posts and Telecommunications system,this model can be effectively applied to improve the Cityphone mobile network quality as well as capability.Developed GIS models can help designers in predicting cell station coverage using real spatial maps that make the results more reliable.This research can help network operators improve the network quality and capability with the best investment efficiently.展开更多
Rapid advancement in science and technology has seen computer network technology being upgraded constantly, and computer technology, in particular, has been applied more and more extensively, which has brought conveni...Rapid advancement in science and technology has seen computer network technology being upgraded constantly, and computer technology, in particular, has been applied more and more extensively, which has brought convenience to people’s lives. The number of people using the internet around the globe has also increased significantly, exerting a profound influence on artificial intelligence. Further, the constant upgrading and development of artificial intelligence has led to the continuous innovation and improvement of computer technology. Countries around the world have also registered an increase in investment, paying more attention to artificial intelligence. Through an analysis of the current development situation and the existing applications of artificial intelligence, this paper explicates the role of artificial intelligence in the face of the unceasing expansion of computer network technology.展开更多
In the paper, we illustrate the importance of the concept of mobile network computer from a technological perspective. Because of the usefulness of mobile network computers, with the growth of the Internet of things, ...In the paper, we illustrate the importance of the concept of mobile network computer from a technological perspective. Because of the usefulness of mobile network computers, with the growth of the Internet of things, mobile network computers may include not only TV box audio-visual equipment, wireless household appliances, and mobile communication equipment, but may also include devices such as intelligent foot rings, smart watches, smart glasses, smart shoes and smart coats. Considering the different types of networks, e.g. IP multimedia Subsystem(IMS), we explain why some network elements are inaccurate and misleading from a technological perspective. We aim to popularize the concept of mobile network computers for its accuracy and importance, which better define modern mobile terminals and reflects the nature of multiple mobile terminals based on the structure of their integrated computers and the capabilities of processing multimedia. In the computer and Internet age, network computers and mobile network computers are the main terminals of fixed and mobile networks, respectively. Therefore, based on the concept of mobile network computers, we discuss the future of information society.展开更多
Networked robots can perceive their surroundings, interact with each other or humans,and make decisions to accomplish specified tasks in remote/hazardous/complex environments. Satelliteunmanned aerial vehicle(UAV) net...Networked robots can perceive their surroundings, interact with each other or humans,and make decisions to accomplish specified tasks in remote/hazardous/complex environments. Satelliteunmanned aerial vehicle(UAV) networks can support such robots by providing on-demand communication services. However, under traditional open-loop communication paradigm, the network resources are usually divided into user-wise mostly-independent links,via ignoring the task-level dependency of robot collaboration. Thus, it is imperative to develop a new communication paradigm, taking into account the highlevel content and values behind, to facilitate multirobot operation. Inspired by Wiener’s Cybernetics theory, this article explores a closed-loop communication paradigm for the robot-oriented satellite-UAV network. This paradigm turns to handle group-wise structured links, so as to allocate resources in a taskoriented manner. It could also exploit the mobility of robots to liberate the network from full coverage,enabling new orchestration between network serving and positive mobility control of robots. Moreover,the integration of sensing, communications, computing and control would enlarge the benefit of this new paradigm. We present a case study for joint mobile edge computing(MEC) offloading and mobility control of robots, and finally outline potential challenges and open issues.展开更多
The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We pro...The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We propose an adaptive allocation algorithm for mobile cloud communication resources in 5G vehicular networks to address these issues.This study analyzes the components of the 5G vehicular network architecture to determine the performance of different components.It is ascertained that the communication modes in 5G vehicular networks for mobile cloud communication include in-band and out-of-band modes.Furthermore,this study analyzes the single-hop and multi-hop modes in mobile cloud communication and calculates the resource transmission rate and bandwidth in different communication modes.The study also determines the scenario of one-way and two-way vehicle lane cloud communication network connectivity,calculates the probability of vehicle network connectivity under different mobile cloud communication radii,and determines the amount of cloud communication resources required by vehicles in different lane scenarios.Based on the communication status of users in 5G vehicular networks,this study calculates the bandwidth and transmission rate of the allocated channels using Shannon’s formula.It determines the adaptive allocation of cloud communication resources,introduces an objective function to obtain the optimal solution after allocation,and completes the adaptive allocation process.The experimental results demonstrate that,with the application of the proposed method,the maximum utilization of user communication resources reaches approximately 99%.The balance coefficient curve approaches 1,and the allocation time remains under 2 s.This indicates that the proposed method has higher adaptive allocation efficiency.展开更多
This paper presents an original probabilistic model of a hybrid underwater wireless sensor network(UWSN),which includes a network of stationary sensors placed on the seabed and a mobile gateway.The mobile gateway is a...This paper presents an original probabilistic model of a hybrid underwater wireless sensor network(UWSN),which includes a network of stationary sensors placed on the seabed and a mobile gateway.The mobile gateway is a wave glider that collects data from the underwater network segment and retransmits it to the processing center.The authors consider the joint problem of optimal localization of stationary network nodes and the corresponding model for bypassing reference nodes by a wave glider.The optimality of the network is evaluated according to the criteria of energy efficiency and reliability.The influence of various physical and technical parameters of the network on its energy efficiency and on the lifespan of sensor nodes is analyzed.The analysis is carried out for networks of various scales,depending on the localization of stationary nodes and the model of bypassing the network with a wave glider.As a model example,the simulation of the functional characteristics of the network for a given size of the water area is carried out.It is shown that in the case of a medium-sized water area,the model of“bypassing the perimeter”by a wave glider is practically feasible,energy efficient and reliable for hourly data measurements.In the case of a large water area,the cluster bypass model becomes more efficient.展开更多
Some frequency reuse irregular patterns in radionetwork design are proposed,the characteristic and applica-tion measures of these patterns are analyzed.Then this paperaccounts that frequency reuse irregular patterns i...Some frequency reuse irregular patterns in radionetwork design are proposed,the characteristic and applica-tion measures of these patterns are analyzed.Then this paperaccounts that frequency reuse irregular patterns is a usefulway to impove spectrum efficiency and it is significative forartificial intelligence to be applied in this field.展开更多
文摘With the popularization of wireless multimedia communications,the wireless traffic is predicated to be increased more than 1000time in the next decade.Some new technologies,e.g.,massive multi.input multi.output antennas,millimeter wave and small
文摘This paper relates to an advanced open mobile communication system and method of integrating the mobile communications, wireless access systems and wired communications into one common platform architecture for China's 4th generation mobile communications, supporting costeffective broadband voice, data and video services in wireless, mobile and wired environment with one single integrated mobile terminal device. The paper includes new architecture in the integrated mobile device and converged network access, and minimum modifi cation in the existing mobile telecommunication infrastructures. This paper introduces the long-term evolution strategy for China's TDD system platform towards China's future 4G mobile communications.
文摘A new reliability evaluation measure, global clustering reliability (GCR), is proposed. Firstly, the common measures used in invulnerability and survivability evaluation of mobile communication networks are discussed, and the shortcomings of these measures are pointed out. Then a new reliability evaluation measure, GCR, which is applicable to mobile communication networks, is proposed. And some properties and theorem about this measure are put forward. Finally, simulation calculation of reliability evaluation that uses this measure to 12 kinds of topological networks is accomplished. And the comparison between this measure and link connected factor (LCF) measure is also given. The results proved that the design of GCR is reasonable, its computation is rapid, moreover, it can take into account of invalidation of both nodes and links, and it has good physical meanings
基金the Taif University Researchers Supporting Project number(TURSP-2020/36),Taif University,Taif,Saudi Arabiafundedby Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R97), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia。
文摘NonorthogonalMultiple Access(NOMA)is incorporated into the wireless network systems to achieve better connectivity,spectral and energy effectiveness,higher data transfer rate,and also obtain the high quality of services(QoS).In order to improve throughput and minimum latency,aMultivariate Renkonen Regressive Weighted Preference Bootstrap Aggregation based Nonorthogonal Multiple Access(MRRWPBA-NOMA)technique is introduced for network communication.In the downlink transmission,each mobile device’s resources and their characteristics like energy,bandwidth,and trust are measured.Followed by,the Weighted Preference Bootstrap Aggregation is applied to recognize the resource-efficient mobile devices for aware data transmission by constructing the different weak hypotheses i.e.,Multivariate Renkonen Regression functions.Based on the classification,resource and trust-aware devices are selected for transmission.Simulation of the proposed MRRWPBA-NOMA technique and existing methods are carried out with different metrics such as data delivery ratio,throughput,latency,packet loss rate,and energy efficiency,signaling overhead.The simulation results assessment indicates that the proposed MRRWPBA-NOMA outperforms well than the conventional methods.
基金funded by the Six Talent Peaks Project in Jiangsu Province(No.KTHY-052)the National Natural Science Foundation of China(No.61971245)+1 种基金the Science and Technology program of Nantong(Contract No.JC2018048)the Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province&Key Lab of Modern Optical Technologies of Education Ministry of China,Soochow University(No.KJS1858).
文摘To achieve the better system performance for cooperative communication in non-orthogonal cognitive radio vehicular adhoc networks(CR-VANETs),this paper investigates the power allocation considering the interference to the main system in a controllable range.We propose a three-slot one-way vehicle system model where the mobile vehicle nodes complete information interaction with the assistance of other independent nodes by borrowing the unused radio spectrum with the primary networks.The end-to-end SNR relationship in overlay and underlay cognitive communication system mode are analyzed by using two forwarding protocol,namely,decode-and-forward(DF)protocol and amplify-and-forward(AF)protocol,respectively.The system outage probability is derived and the optimal power allocation factor is obtained via seeking the minimum value of the approximation of system outage probability.The analytical results have been confirmed by means of Monte Carlo simulations.Simulation results show that the proposed system performance in terms of outage under the optimal power allocation is superior to that under the average power allocation,and is also better than that under other power allocation systems.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP 1/279/42).www.kku.edu.sa.
文摘The sixth-generation(6G)wireless communication networks are anticipated in integrating aerial,terrestrial,and maritime communication into a robust system to accomplish trustworthy,quick,and low latency needs.It enables to achieve maximum throughput and delay for several applications.Besides,the evolution of 6G leads to the design of unmanned aerial vehicles(UAVs)in providing inexpensive and effective solutions in various application areas such as healthcare,environment monitoring,and so on.In the UAV network,effective data collection with restricted energy capacity poses a major issue to achieving high quality network communication.It can be addressed by the use of clustering techniques forUAVs in 6G networks.In this aspect,this study develops a novel metaheuristic based energy efficient data gathering scheme for clustered unmanned aerial vehicles(MEEDG-CUAV).The proposed MEEDG-CUAV technique intends in partitioning the UAV networks into various clusters and assign a cluster head(CH)to reduce the overall energy utilization.Besides,the quantum chaotic butterfly optimization algorithm(QCBOA)with a fitness function is derived to choose CHs and construct clusters.The experimental validation of the MEEDG-CUAV technique occurs utilizing benchmark dataset and the experimental results highlighted the better performance over the other state of art techniques interms of different measures.
文摘With the further reduction in cost and the increase in bandwidth, as well as the increase in internet applications, satellite communications are gradually shifting from a complementary role to becoming a fully integrated component of terrestrial communications networks. This paper firstly introduces the development of satellite communications, mobile communications and the global space-terrestrial integrated network. We then propose the functional architecture and network architecture for the integration of satellite communications and terrestrial mobile communications based on 5 G core networks. Finally, in order to support the network of the future, four key technologies are presented, a space-terrestrial integrated air interface design, a multi-band space-terrestrial integrated transmission waveform design, space-terrestrial integrated switching and routing technology, along with spectrum sharing and interference coordination technology, all necessary for the development of space-terrestrial integrated networks.
文摘In this paper, we propose a clustered multihop cellular network (cMCN) architecture and study its performance using fixed channel assignment (FCA) scheme for uplink transmission. The proposed cMCN using FCA can be applied with some reuse factors. An analytical model based on Markov chain is developed to analyze its performance and validated through computer simulation. And then, we implement direct peer-to-peer communication (DC) in cMCN by considering more reasonable conditions in practice. DC means that two calls communicate directly instead of going through base stations. The results show that cMCN with FCA can reduce the call blocking probability significantly as compared with the traditional single-hop cellular networks with FCA and can be further reduced by using DC.
基金Acknowledgements The work was supported by National Natural Science Foundation of China (Grant No.60972008). The corresponding author is Jiang Wei.
文摘Cognitive radio and cooperative communication can greatly improve the spectrum efficiency in wireless communications.We study a cognitive radio network where two secondary source terminals exchange their information with the assistance of a relay node under interference power constraints.In order to enhance the transmit rate and maintain fairness between two source terminals,a practical 2-phase analog network coding protocol is adopted and its optimal power allocation algorithm is proposed.Numerical results verify the superiority of the proposed algorithm over the conventional direct transmission protocol and 4-phase amplify-and-forward relay protocol.
文摘5G is a new generation of mobile networking that aims to achieve unparalleled speed and performance. To accomplish this, three technologies, Device-to-Device communication (D2D), multi-access edge computing (MEC) and network function virtualization (NFV) with ClickOS, have been a significant part of 5G, and this paper mainly discusses them. D2D enables direct communication between devices without the relay of base station. In 5G, a two-tier cellular network composed of traditional cellular network system and D2D is an efficient method for realizing high-speed communication. MEC unloads work from end devices and clouds platforms to widespread nodes, and connects the nodes together with outside devices and third-party providers, in order to diminish the overloading effect on any device caused by enormous applications and improve users’ quality of experience (QoE). There is also a NFV method in order to fulfill the 5G requirements. In this part, an optimized virtual machine for middle-boxes named ClickOS is introduced, and it is evaluated in several aspects. Some middle boxes are being implemented in the ClickOS and proved to have outstanding performances.
基金the National High-Tech Research and Development Plan of China("863"Program)under Grant No.2007AA01Z262National Natural Science Foundation of China under Grant Nos.60672093and60496310National Basic Research Program of China("973"Program)under Grant No.2007CB310603
文摘To facilitate the demand for a higher spectrum and power efficiency arising from the next generation mobile communication system, the introduction of relay-aided cooperative communication into the existing cellular infrastructure is considered as the most practical improvement under high rate and coverage. In comparison with the legacy cellular network, relay-aided cooperative communication network enjoys relative advantages over coverage efficiency, operation cost and transmission capacity. Transmission in relay-aided cooperative system falls into three types: the three-terminal transmission model, two-hop multi-relay parallel transmission model, and multi-hop multi-relay transmission model. For the extensive perspective of relay-aided cooperative communication in application, a profound research has been carried out in communication standards such as Worldwide Interoperability for Microwave Access (WiMAX) and Wireless World Initiative New Radio (WINNER).
基金National Natural Sci-ence Foundation of China(Grant Nos.61871241 and 61771263)Science and Technology Program of Nantong(Grant No.JC2019117).
文摘Cognitive emergency communication net-works can meet the requirements of large capac-ity,high density and low delay in emergency com-munications.This paper analyzes the properties of emergency users in cognitive emergency communi-cation networks,designs a multi-objective optimiza-tion and proposes a novel multi-objective bacterial foraging optimization algorithm based on effective area(MOBFO-EA)to maximize the transmission rate while maximizing the lifecycle of the network.In the algorithm,the effective area is proposed to prevent the algorithm from falling into a local optimum,and the diversity and uniformity of the Pareto-optimal solu-tions distributed in the effective area are used to eval-uate the optimization algorithm.Then,the dynamic preservation is used to enhance the competitiveness of excellent individuals and the uniformity and diversity of the Pareto-optimal solutions in the effective area.Finally,the adaptive step size,adaptive moving direc-tion and inertial weight are used to shorten the search time of bacteria and accelerate the optimization con-vergence.The simulation results show that the pro-posed MOBFO-EA algorithm improves the efficiency of the Pareto-optimal solutions by approximately 55%compared with the MOPSO algorithm and by approx-imately 60%compared with the MOBFO algorithm and has the fastest and smoothest convergence.
文摘The airspace communication network based on spacecraft has a wide range of applications in regional information enhancement and emergency communication. In this paper, a routing algorithm for congestion degree detection of multipath routing (CD_AOMDV) is proposed. The method of combining the whole congestion degree detection and local congestion degree detection before service initiation is adopted. Timely and accurate judgment of the congestion degree reduced the loss rate of the hot nodes, so the average packet loss rate reduced. Simulation results show that compared with the traditional AOMDV protocol, the CD_AOMDV proposed in this paper has reduced the packet loss and improved delay performance, which is more suitable for the airspace communication network.
文摘This article describes GIS-based models successfully developed for predicting the coverage of Cityphone cellular network,visualizing the predicted signal strength,and analyzing the field strength coverage.In order to predict the signal coverage strength of communication network more accurately,the spatial and nonspatial databases of a mobile cellular network are combined by GIS and produce the necessary parameters.A GIS model named COST-231-Walfisch–Ikegami model(WIM)is developed for signal coverage prediction in Ho Chi Minh City.Radio-line-of-sight and nonradio-lineof-sight conditions can be determined by this model.In addition,in case of nonradio-line-of-sight conditions,average building height,building separation,building width,incident radio path,and road orientation with respect to the direct radio path were obtained using GIS.Road orientation loss,multiscreen diffraction loss,and shadowing gain were predicted more accurate by this model.The scale of maps in the experiment was 1:2000 and the average of floor height was 3 m because there were no exact building height measurements.Statistical results show that the path loss predicted by the COST 231 WIM overcame the real path loss of each cell station.And this method can be used for signal coverage prediction of mobile cellular network in urban areas.Compared to the current situation with the Ho Chi Minh City Posts and Telecommunications system,this model can be effectively applied to improve the Cityphone mobile network quality as well as capability.Developed GIS models can help designers in predicting cell station coverage using real spatial maps that make the results more reliable.This research can help network operators improve the network quality and capability with the best investment efficiently.
文摘Rapid advancement in science and technology has seen computer network technology being upgraded constantly, and computer technology, in particular, has been applied more and more extensively, which has brought convenience to people’s lives. The number of people using the internet around the globe has also increased significantly, exerting a profound influence on artificial intelligence. Further, the constant upgrading and development of artificial intelligence has led to the continuous innovation and improvement of computer technology. Countries around the world have also registered an increase in investment, paying more attention to artificial intelligence. Through an analysis of the current development situation and the existing applications of artificial intelligence, this paper explicates the role of artificial intelligence in the face of the unceasing expansion of computer network technology.
文摘In the paper, we illustrate the importance of the concept of mobile network computer from a technological perspective. Because of the usefulness of mobile network computers, with the growth of the Internet of things, mobile network computers may include not only TV box audio-visual equipment, wireless household appliances, and mobile communication equipment, but may also include devices such as intelligent foot rings, smart watches, smart glasses, smart shoes and smart coats. Considering the different types of networks, e.g. IP multimedia Subsystem(IMS), we explain why some network elements are inaccurate and misleading from a technological perspective. We aim to popularize the concept of mobile network computers for its accuracy and importance, which better define modern mobile terminals and reflects the nature of multiple mobile terminals based on the structure of their integrated computers and the capabilities of processing multimedia. In the computer and Internet age, network computers and mobile network computers are the main terminals of fixed and mobile networks, respectively. Therefore, based on the concept of mobile network computers, we discuss the future of information society.
基金supported in part by the National Key Research and Development Program of China (Grant No.2020YFA0711301)in part by the National Natural Science Foundation of China (Grant No.62341110 and U22A2002)in part by the Suzhou Science and Technology Project。
文摘Networked robots can perceive their surroundings, interact with each other or humans,and make decisions to accomplish specified tasks in remote/hazardous/complex environments. Satelliteunmanned aerial vehicle(UAV) networks can support such robots by providing on-demand communication services. However, under traditional open-loop communication paradigm, the network resources are usually divided into user-wise mostly-independent links,via ignoring the task-level dependency of robot collaboration. Thus, it is imperative to develop a new communication paradigm, taking into account the highlevel content and values behind, to facilitate multirobot operation. Inspired by Wiener’s Cybernetics theory, this article explores a closed-loop communication paradigm for the robot-oriented satellite-UAV network. This paradigm turns to handle group-wise structured links, so as to allocate resources in a taskoriented manner. It could also exploit the mobility of robots to liberate the network from full coverage,enabling new orchestration between network serving and positive mobility control of robots. Moreover,the integration of sensing, communications, computing and control would enlarge the benefit of this new paradigm. We present a case study for joint mobile edge computing(MEC) offloading and mobility control of robots, and finally outline potential challenges and open issues.
基金This research was supported by Science and Technology Research Project of Education Department of Jiangxi Province,China(Nos.GJJ2206701,GJJ2206717).
文摘The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We propose an adaptive allocation algorithm for mobile cloud communication resources in 5G vehicular networks to address these issues.This study analyzes the components of the 5G vehicular network architecture to determine the performance of different components.It is ascertained that the communication modes in 5G vehicular networks for mobile cloud communication include in-band and out-of-band modes.Furthermore,this study analyzes the single-hop and multi-hop modes in mobile cloud communication and calculates the resource transmission rate and bandwidth in different communication modes.The study also determines the scenario of one-way and two-way vehicle lane cloud communication network connectivity,calculates the probability of vehicle network connectivity under different mobile cloud communication radii,and determines the amount of cloud communication resources required by vehicles in different lane scenarios.Based on the communication status of users in 5G vehicular networks,this study calculates the bandwidth and transmission rate of the allocated channels using Shannon’s formula.It determines the adaptive allocation of cloud communication resources,introduces an objective function to obtain the optimal solution after allocation,and completes the adaptive allocation process.The experimental results demonstrate that,with the application of the proposed method,the maximum utilization of user communication resources reaches approximately 99%.The balance coefficient curve approaches 1,and the allocation time remains under 2 s.This indicates that the proposed method has higher adaptive allocation efficiency.
基金The research was partially funded by the Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program:Advanced Digital Technologies(Contract No.075-15-2020-903 dated 16.11.2020).
文摘This paper presents an original probabilistic model of a hybrid underwater wireless sensor network(UWSN),which includes a network of stationary sensors placed on the seabed and a mobile gateway.The mobile gateway is a wave glider that collects data from the underwater network segment and retransmits it to the processing center.The authors consider the joint problem of optimal localization of stationary network nodes and the corresponding model for bypassing reference nodes by a wave glider.The optimality of the network is evaluated according to the criteria of energy efficiency and reliability.The influence of various physical and technical parameters of the network on its energy efficiency and on the lifespan of sensor nodes is analyzed.The analysis is carried out for networks of various scales,depending on the localization of stationary nodes and the model of bypassing the network with a wave glider.As a model example,the simulation of the functional characteristics of the network for a given size of the water area is carried out.It is shown that in the case of a medium-sized water area,the model of“bypassing the perimeter”by a wave glider is practically feasible,energy efficient and reliable for hourly data measurements.In the case of a large water area,the cluster bypass model becomes more efficient.
文摘Some frequency reuse irregular patterns in radionetwork design are proposed,the characteristic and applica-tion measures of these patterns are analyzed.Then this paperaccounts that frequency reuse irregular patterns is a usefulway to impove spectrum efficiency and it is significative forartificial intelligence to be applied in this field.