我国陆上天然气管道规模庞大,管道路由地形、地貌和气候特征复杂多样。面对管道及管道所处环境的复杂性,提高油气管道的本质安全水平是行业和民众的共同需求,保证陆上天然气管道安全和可靠运行也越来越成为行业关注的焦点。为达到这个目...我国陆上天然气管道规模庞大,管道路由地形、地貌和气候特征复杂多样。面对管道及管道所处环境的复杂性,提高油气管道的本质安全水平是行业和民众的共同需求,保证陆上天然气管道安全和可靠运行也越来越成为行业关注的焦点。为达到这个目标,可以采用从源头上对陆上天然气管道的设计方法进行改进的办法。目前天然气管道设计大多普遍利用传统的基于应力的设计方法,该方法由于采用单一的安全系数导致油气管道的安全裕度难以考量,针对此问题,基于可靠性的油气管道设计和评估方法(Reliability Based Design and Assessment,简称RBDA)正成为现代陆上天然气管道设计的趋向,该方法可量化管道全生命周期中的风险,避免采用不合理或过于保守的设计标准。故本研究综合CSAZ662《油气管道系统》标准规范的油气管道可靠性设计方法,并结合国内部分机构根据我国国情而修正的可靠性研究,利用RBDA方法流程,根据某段实际天然气管道确定该管道失效的主要原因(以腐蚀和第三方破坏为主),设计了管道在其生命周期内的极限状态,根据极限状态选择对应的极限状态方程类型,并利用多种数据统计分析方法和软件确定方程中所涉及各个随机变量参数的分布类型,之后利用蒙特卡洛法(Monte-Carlo法)计算设计壁厚条件下得到天然气管道失效概率,统筹考虑其他失效原因的权重,进而得到该管道的可靠度,将该可靠度数据与国内外标准规范确定的目标可靠度进行对比,检验是否满足可靠度目标。由此,对大口径天然气管段完成壁厚设计,实现了使用RBDA方法对1016 mm大口径天然气管道设计的整体流程。展开更多
海湾州际工程公司对近期文献中谈及需要改进的设计管道壁厚的现行公式进行了研究,按照ASME B 31.4和B.31.8的基本原则,在直径和壁厚之比、沿管壁应力分布和管材的非线性方面得出了计算管壁的分析解。在考虑钢材等级和规定的设计压力基础...海湾州际工程公司对近期文献中谈及需要改进的设计管道壁厚的现行公式进行了研究,按照ASME B 31.4和B.31.8的基本原则,在直径和壁厚之比、沿管壁应力分布和管材的非线性方面得出了计算管壁的分析解。在考虑钢材等级和规定的设计压力基础上,确定的这种更精确的管壁计算法能减少管道壁厚7%,可节约大量的钢材。展开更多
文摘我国陆上天然气管道规模庞大,管道路由地形、地貌和气候特征复杂多样。面对管道及管道所处环境的复杂性,提高油气管道的本质安全水平是行业和民众的共同需求,保证陆上天然气管道安全和可靠运行也越来越成为行业关注的焦点。为达到这个目标,可以采用从源头上对陆上天然气管道的设计方法进行改进的办法。目前天然气管道设计大多普遍利用传统的基于应力的设计方法,该方法由于采用单一的安全系数导致油气管道的安全裕度难以考量,针对此问题,基于可靠性的油气管道设计和评估方法(Reliability Based Design and Assessment,简称RBDA)正成为现代陆上天然气管道设计的趋向,该方法可量化管道全生命周期中的风险,避免采用不合理或过于保守的设计标准。故本研究综合CSAZ662《油气管道系统》标准规范的油气管道可靠性设计方法,并结合国内部分机构根据我国国情而修正的可靠性研究,利用RBDA方法流程,根据某段实际天然气管道确定该管道失效的主要原因(以腐蚀和第三方破坏为主),设计了管道在其生命周期内的极限状态,根据极限状态选择对应的极限状态方程类型,并利用多种数据统计分析方法和软件确定方程中所涉及各个随机变量参数的分布类型,之后利用蒙特卡洛法(Monte-Carlo法)计算设计壁厚条件下得到天然气管道失效概率,统筹考虑其他失效原因的权重,进而得到该管道的可靠度,将该可靠度数据与国内外标准规范确定的目标可靠度进行对比,检验是否满足可靠度目标。由此,对大口径天然气管段完成壁厚设计,实现了使用RBDA方法对1016 mm大口径天然气管道设计的整体流程。
文摘海湾州际工程公司对近期文献中谈及需要改进的设计管道壁厚的现行公式进行了研究,按照ASME B 31.4和B.31.8的基本原则,在直径和壁厚之比、沿管壁应力分布和管材的非线性方面得出了计算管壁的分析解。在考虑钢材等级和规定的设计压力基础上,确定的这种更精确的管壁计算法能减少管道壁厚7%,可节约大量的钢材。