In this paper,authors have discussed predominately unidirectional Fluid Structure Interaction,i. e. a given field in which a high speed/pressure and high temperature thermal flow affect the interface between pipelines...In this paper,authors have discussed predominately unidirectional Fluid Structure Interaction,i. e. a given field in which a high speed/pressure and high temperature thermal flow affect the interface between pipelines joints. Surface forces at the fluid-structure interface allow designers to investigate the effects of fluid flow on the structural deformation and stresses. Possible failure modes have been compared with different loads from steady thermal flow analysis results. CFD code SC/Tetra and FEA code ANSYS are used in this study. These studies can be used in protecting certain fatigue failures for pipeline joints under critical cyclic load conditions from both thermal expansion and hydraulic pressure in municipal and environmental engineering applications as well as oil and gas fields.展开更多
文摘In this paper,authors have discussed predominately unidirectional Fluid Structure Interaction,i. e. a given field in which a high speed/pressure and high temperature thermal flow affect the interface between pipelines joints. Surface forces at the fluid-structure interface allow designers to investigate the effects of fluid flow on the structural deformation and stresses. Possible failure modes have been compared with different loads from steady thermal flow analysis results. CFD code SC/Tetra and FEA code ANSYS are used in this study. These studies can be used in protecting certain fatigue failures for pipeline joints under critical cyclic load conditions from both thermal expansion and hydraulic pressure in municipal and environmental engineering applications as well as oil and gas fields.