Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil aroun...Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area.展开更多
Antibacterial resistance is a global health threat that requires further concrete action on the part of all countries.In this context,one of the biggest concerns is whether enough new antibacterial drugs are being dis...Antibacterial resistance is a global health threat that requires further concrete action on the part of all countries.In this context,one of the biggest concerns is whether enough new antibacterial drugs are being discovered and developed.Although several high-quality reviews on clinical antibacterial drug pipelines from a global perspective were published recently,none provides comprehensive information on original antibacterial drugs at clinical stages in China.In this review,we summarize the latest progress of novel antibacterial drugs approved for marketing and under clinical evaluation in China since 2019.Information was obtained by consulting official websites,searching commercial databases,retrieving literature,asking personnel from institutions or companies,and other means,and a considerable part of the data covered here has not been included in other reviews.As of June 30,2023,a total of 20 antibacterial projects from 17 Chinese pharmaceutical companies or developers were identified and updated.Among them,two new antibacterial drugs that belong to traditional antibiotic classes were approved by the National Medical Products Administration(NMPA)in China in 2019 and 2021,respectively,and 18 antibacterial agents are in clinical development,with one under regulatory evaluation,five in phase-3,six in phase-2,and six in phase-1.Most of the clinical candidates are new analogs or monocomponents of traditional antibacterial pharmacophore types,including two dual-acting hybrid antibiotics and a recombinant antibacterial protein.Overall,despite there being 17 antibacterial clinical candidates,our analysis indicates that there are still relatively few clinically differentiated antibacterial agents in stages of clinical development in China.Hopefully,Chinese pharmaceutical companies and institutions will develop more innovative and clinically differentiated candidates with good market potential in the future research and development(R&D)of original antibacterial drugs.展开更多
Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect...Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect detection in urban underground pipelines,this study developed an improved defect detection method for urban underground pipelines based on fully convolutional one-stage object detector(FCOS),called spatial pyramid pooling-fast(SPPF)feature fusion and dual detection heads based on FCOS(SDH-FCOS)model.This study improved the feature fusion component of the model network based on FCOS,introduced an SPPF network structure behind the last output feature layer of the backbone network,fused the local and global features,added a top-down path to accelerate the circulation of shallowinformation,and enriched the semantic information acquired by shallow features.The ability of the model to detect objects with multiple morphologies was strengthened by introducing dual detection heads.The experimental results using an open dataset of underground pipes show that the proposed SDH-FCOS model can recognize underground pipe defects more accurately;the average accuracy was improved by 2.7% compared with the original FCOS model,reducing the leakage rate to a large extent and achieving real-time detection.Also,our model achieved a good trade-off between accuracy and speed compared with other mainstream methods.This proved the effectiveness of the proposed model.展开更多
Local scour around pipelines crossing rivers or in marine environments is a significant concern.It can lead to failure of the pipelines resulting in environmental side effects and economic losses.This study developed ...Local scour around pipelines crossing rivers or in marine environments is a significant concern.It can lead to failure of the pipelines resulting in environmental side effects and economic losses.This study developed an experimental method to reduce local scour around pipelines with a steady flow of clear water by installing cylindrical and cubical sacrificial piles.Three sizes of sacrificial piles were examined in a linear arrangement.Sacrificial piles were installed on the upstream side of the pipeline at three distances.Maximum scour depth reduction rates below the pipeline were computed.The results showed that sacrificial piles could protect a pipeline from local scour.A portion of scoured sediment around the sacrificial piles was deposited beneath the pipeline.This sediment accumulation reduced the scour depth beneath the pipeline.Analysis of the experimental results demonstrated that the size of piles(d),the spacing between piles,and the distance between the pipe and piles(Xp)were the variables that reduced the maximum scour beneath the pipeline with a diameter of D.For the piles with d=0.40D and 0.64D,X_(p)=4OD was the optimal distance to install a group of piles,and cubical piles could mitigate scour more effectively than cylindrical piles under similar conditions.For the piles with d=D,the greatest reduction in scour depth was achieved at X_(p)=50D with any desired spacings between piles,and cylindrical piles in this dimension could protect the pipeline against scour more effectively than cubical piles.展开更多
Currently,accelerated aging tests are widely used to study the aging process of polyethylene pipelines.However,this approach can only simulate one or several main influencing factors in the natural environment,which a...Currently,accelerated aging tests are widely used to study the aging process of polyethylene pipelines.However,this approach can only simulate one or several main influencing factors in the natural environment,which are often quite different from the actual environment of the buried pipelines.In this study,five types of PE80 buried pipelines in service for 9e18 years were taken as the research object,while new PE80 pipelines were taken as the reference group.The aging process and mechanism of polyethylene buried pipelines were studied through mechanical and chemical property tests and microstructural analysis.The results showed that the pipeline exhibited cross-linking as the main aging mechanism after being in service for 0e18 years.The aging degree and law of the inner and outer surface of the pipeline were compared,and the observed mechanism of both surfaces was explained.After 18 years in service,the elongation at the break of the pipe decreased by 16.2%,and the toughness of the matrix in the main collapse area of the tensile sample was the fundamental reason responsible for changes in the mechanical properties.Finally,after 18 years in service,the oxidation induction time of the pipeline was 25.7 min,which was 28.5% higher than the national standard value.There were no potential safety hazards during continuous long-term service.The results of this paper provide reference data and theoretical guidance for the aging process study of buried polyethylene pipelines.展开更多
Because non-buried submarine pipelines under cyclic thermal loading are prone to global buckling,sleepers are commonly laid along the pipeline route to induce a series of relatively small and controllable lateral buck...Because non-buried submarine pipelines under cyclic thermal loading are prone to global buckling,sleepers are commonly laid along the pipeline route to induce a series of relatively small and controllable lateral buckling.A finite element model which can simulate the transformation of pipeline laid on a sleeper from vertical buckling to lateral buckling is established in this work.The parameters of sleeper affecting pipeline buckling modes are analysed,and a new kind of sleeper is proposed aimed at avoiding antisymmetric buckling.Results show that the lateral trigger force can avoid antisymmetric lateral buckling when acting between 1℃and 13℃before the critical buckling temperature.The range increases slightly with increasing trigger force.Compared with an ordinary sleeper,the proposed new sleeper with slider can reduce the critical buckling temperature by 25%,which significantly improves the success rate of sleepers.展开更多
External disturbance is an important cause of underground pressure pipeline damage,which leads to accidents,and it is crucial to study the risk of damage caused by external disturbance and come up with proper preventi...External disturbance is an important cause of underground pressure pipeline damage,which leads to accidents,and it is crucial to study the risk of damage caused by external disturbance and come up with proper prevention and control measures.We reviewed literature on risk identification of underground pressure pipelines damage due to external disturbance was conducted,and a list of risk factors was formed.Based on the list of risk factors,fault tree analysis was carried out on underground pressure pipelines damage caused by external disturbances,and risk prevention and control measures were proposed through the calculation of minimum cut sets,minimum path sets,and structural importance,in hopes of providing reference for the normal operation of underground pressure pipelines.展开更多
基金China Postdoctoral Science Foundation,Grant/Award Number:2023M731999National Natural Science Foundation of China,Grant/Award Number:52301326。
文摘Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area.
基金supported by the National Natural Science Foundation of China(32141003 and 82330110)the CAMS Innovation Fund for Medical Sciences(CIFMS+2 种基金2021-I2M-1-039)the National Science and Technology Infrastructure of China(National Pathogen Resource Center-NPRC-32)the Fundamental Research Funds for the Central Universities(2021-PT350-001).
文摘Antibacterial resistance is a global health threat that requires further concrete action on the part of all countries.In this context,one of the biggest concerns is whether enough new antibacterial drugs are being discovered and developed.Although several high-quality reviews on clinical antibacterial drug pipelines from a global perspective were published recently,none provides comprehensive information on original antibacterial drugs at clinical stages in China.In this review,we summarize the latest progress of novel antibacterial drugs approved for marketing and under clinical evaluation in China since 2019.Information was obtained by consulting official websites,searching commercial databases,retrieving literature,asking personnel from institutions or companies,and other means,and a considerable part of the data covered here has not been included in other reviews.As of June 30,2023,a total of 20 antibacterial projects from 17 Chinese pharmaceutical companies or developers were identified and updated.Among them,two new antibacterial drugs that belong to traditional antibiotic classes were approved by the National Medical Products Administration(NMPA)in China in 2019 and 2021,respectively,and 18 antibacterial agents are in clinical development,with one under regulatory evaluation,five in phase-3,six in phase-2,and six in phase-1.Most of the clinical candidates are new analogs or monocomponents of traditional antibacterial pharmacophore types,including two dual-acting hybrid antibiotics and a recombinant antibacterial protein.Overall,despite there being 17 antibacterial clinical candidates,our analysis indicates that there are still relatively few clinically differentiated antibacterial agents in stages of clinical development in China.Hopefully,Chinese pharmaceutical companies and institutions will develop more innovative and clinically differentiated candidates with good market potential in the future research and development(R&D)of original antibacterial drugs.
基金supported by the National Natural Science Foundation of China under Grant No.61976226the Research and Academic Team of South-CentralMinzu University under Grant No.KTZ20050.
文摘Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect detection in urban underground pipelines,this study developed an improved defect detection method for urban underground pipelines based on fully convolutional one-stage object detector(FCOS),called spatial pyramid pooling-fast(SPPF)feature fusion and dual detection heads based on FCOS(SDH-FCOS)model.This study improved the feature fusion component of the model network based on FCOS,introduced an SPPF network structure behind the last output feature layer of the backbone network,fused the local and global features,added a top-down path to accelerate the circulation of shallowinformation,and enriched the semantic information acquired by shallow features.The ability of the model to detect objects with multiple morphologies was strengthened by introducing dual detection heads.The experimental results using an open dataset of underground pipes show that the proposed SDH-FCOS model can recognize underground pipe defects more accurately;the average accuracy was improved by 2.7% compared with the original FCOS model,reducing the leakage rate to a large extent and achieving real-time detection.Also,our model achieved a good trade-off between accuracy and speed compared with other mainstream methods.This proved the effectiveness of the proposed model.
文摘Local scour around pipelines crossing rivers or in marine environments is a significant concern.It can lead to failure of the pipelines resulting in environmental side effects and economic losses.This study developed an experimental method to reduce local scour around pipelines with a steady flow of clear water by installing cylindrical and cubical sacrificial piles.Three sizes of sacrificial piles were examined in a linear arrangement.Sacrificial piles were installed on the upstream side of the pipeline at three distances.Maximum scour depth reduction rates below the pipeline were computed.The results showed that sacrificial piles could protect a pipeline from local scour.A portion of scoured sediment around the sacrificial piles was deposited beneath the pipeline.This sediment accumulation reduced the scour depth beneath the pipeline.Analysis of the experimental results demonstrated that the size of piles(d),the spacing between piles,and the distance between the pipe and piles(Xp)were the variables that reduced the maximum scour beneath the pipeline with a diameter of D.For the piles with d=0.40D and 0.64D,X_(p)=4OD was the optimal distance to install a group of piles,and cubical piles could mitigate scour more effectively than cylindrical piles under similar conditions.For the piles with d=D,the greatest reduction in scour depth was achieved at X_(p)=50D with any desired spacings between piles,and cylindrical piles in this dimension could protect the pipeline against scour more effectively than cubical piles.
基金Special technical support program of the State Administration of Market Supervision(2021YJ021)Science and technology program of the State Administration of Market Supervision(2021MK118,2021MK119).
文摘Currently,accelerated aging tests are widely used to study the aging process of polyethylene pipelines.However,this approach can only simulate one or several main influencing factors in the natural environment,which are often quite different from the actual environment of the buried pipelines.In this study,five types of PE80 buried pipelines in service for 9e18 years were taken as the research object,while new PE80 pipelines were taken as the reference group.The aging process and mechanism of polyethylene buried pipelines were studied through mechanical and chemical property tests and microstructural analysis.The results showed that the pipeline exhibited cross-linking as the main aging mechanism after being in service for 0e18 years.The aging degree and law of the inner and outer surface of the pipeline were compared,and the observed mechanism of both surfaces was explained.After 18 years in service,the elongation at the break of the pipe decreased by 16.2%,and the toughness of the matrix in the main collapse area of the tensile sample was the fundamental reason responsible for changes in the mechanical properties.Finally,after 18 years in service,the oxidation induction time of the pipeline was 25.7 min,which was 28.5% higher than the national standard value.There were no potential safety hazards during continuous long-term service.The results of this paper provide reference data and theoretical guidance for the aging process study of buried polyethylene pipelines.
基金financially supported by the National Science Fund for Distinguished Young Scholars of China (Grant No.51825904)。
文摘Because non-buried submarine pipelines under cyclic thermal loading are prone to global buckling,sleepers are commonly laid along the pipeline route to induce a series of relatively small and controllable lateral buckling.A finite element model which can simulate the transformation of pipeline laid on a sleeper from vertical buckling to lateral buckling is established in this work.The parameters of sleeper affecting pipeline buckling modes are analysed,and a new kind of sleeper is proposed aimed at avoiding antisymmetric buckling.Results show that the lateral trigger force can avoid antisymmetric lateral buckling when acting between 1℃and 13℃before the critical buckling temperature.The range increases slightly with increasing trigger force.Compared with an ordinary sleeper,the proposed new sleeper with slider can reduce the critical buckling temperature by 25%,which significantly improves the success rate of sleepers.
基金This project was funded by Consulting Research Project of Chinese Academy of Engineering:Research on Innovative Development Strategy of Urban Safety Engineering(Project number:2020-02)。
文摘External disturbance is an important cause of underground pressure pipeline damage,which leads to accidents,and it is crucial to study the risk of damage caused by external disturbance and come up with proper prevention and control measures.We reviewed literature on risk identification of underground pressure pipelines damage due to external disturbance was conducted,and a list of risk factors was formed.Based on the list of risk factors,fault tree analysis was carried out on underground pressure pipelines damage caused by external disturbances,and risk prevention and control measures were proposed through the calculation of minimum cut sets,minimum path sets,and structural importance,in hopes of providing reference for the normal operation of underground pressure pipelines.