The adaptive FEM analysis of the temperature field of the piston in one diesel engine is given by using the ANSYS software. By making full use of the post results provided by the software, the posteriori error estimat...The adaptive FEM analysis of the temperature field of the piston in one diesel engine is given by using the ANSYS software. By making full use of the post results provided by the software, the posteriori error estimation and adaptive accuracy meshing algorithm is developed. So the blindness of the mesh design through experiences can be avoided, and the accuracy requirement is adapted to the relative temperature gradient distribution across the entire domain. Therefore the meshes and solutions can be obtained at the same time. Based on the temperature field analysis, the thermal stress and deformation fields are calculated as well. The results show that the stress concentrates on the edge of the piston pin boss and the inside surface of the first ring groove, and the deformation of the head of the piston is greatest. But the difference between the long and short axes of the bottom cross section is greatest.展开更多
Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV...Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.展开更多
In this article,we consider the numerical prediction of the noise emission from a wheelset in laboratory conditions.We focus on the fluid-structure interaction leading to sound emission in the fluid domain by analyzin...In this article,we consider the numerical prediction of the noise emission from a wheelset in laboratory conditions.We focus on the fluid-structure interaction leading to sound emission in the fluid domain by analyzing three different methods to account for acoustic sources.These are a discretized baffled piston using the discrete calculation method(DCM),a closed cylindrical volume using the boundary element method(BEM)and radiating elastic disks in a cubic enclosure solved with the finite element method(FEM).We provide the validation of the baffled piston and the BEM using measurements of the noise emission of a railway wheel by considering ground reflections in the numerical models.Selected space-resolved waveforms are compared with experimental results as well as with a fluid-structure interaction finite element model.The computational advantage of a discretized disk mounted on a baffle and BEM compared to FEM is highlighted,and the baffled pistons limitations caused by a lack of edge radiation effects are investigated.展开更多
Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-me...Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-mented using the AVL FIRE software.The effects of the angle of nozzle inclination on fuel evaporation,mixture distribution,and combustion in the engine cylinder have been systematically studied at 5500 r/min and consider-ing full load cruise conditions.According to the results,as the angle of nozzle inclination increases,the maximum combustion explosion pressure in the cylinderfirst increases and then it decreases.When the angle of nozzle incli-nation is less than 45°,the quality of the mixture in the cylinder and the combustion performance can be improved by increasing the angle.When the angle of nozzle inclination is greater than 45°,however,the mixture unevenness increases slightly with the angle,leading to a deterioration of the combustion performances.When the angle of nozzle inclination is between 35°and 55°,the overall combustion performance of the engine is rela-tively good.When the angle of nozzle inclination is 45°,the combustion chamber’s geometry and the cylinder’s airflow are well matched with the fuel spray,and the mixture quality is the best.Compared with 25°,the peak heat release rate increases by 20%,and the maximum combustion burst pressure increases by 5.5%.展开更多
The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Aut...The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders.展开更多
Manufacturing machines converting energy to mechanical work at the molecular level is a vital pathway to ex- plore the microscopic world. A kind of operable molecular engines, composed offl-cyclodextrin (fl-CD), ary...Manufacturing machines converting energy to mechanical work at the molecular level is a vital pathway to ex- plore the microscopic world. A kind of operable molecular engines, composed offl-cyclodextrin (fl-CD), aryl, al- kene and amide moiety was investigated using molecular dynamics simulations combined with free-energy calcula- tions. To understand how the integrated alkene double bond controls the work performed on the engines, two alkene isomers of the prototype were considered as two molecular engines. The free-energy profiles delineating the binding process of the amide (Z)- and (E)-isomers for each alkene isomer with 1-adamantanol indicate that for the alkene (E)-isomer, the apparent work performed on the amide bond is 1.6 kcal/mol, while the alkene (Z)-isomer is incapa- ble to perform work. Direct switch on/off of engines caused by the isomerization of the alkene bond was, therefore, witnessed, in line with experimental measurements. Decomposition of the free-energy profile into different compo- nents and structural analyses suggest that the isomerization of the alkene bond controls the position of the aryl unit relative to the cavity of the CD, resulting in the difference among the free-energy profiles and the stark contrast of the work performed on engines.展开更多
A cylinder combustion simulation model was established for a two-stroke aviation piston engine used in a small unmanned aerial vehicle. The influence of different ignition system parameters on the combustion process o...A cylinder combustion simulation model was established for a two-stroke aviation piston engine used in a small unmanned aerial vehicle. The influence of different ignition system parameters on the combustion process of aviation kerosene was studied using this model. The research results showed that under the working conditions of 5500 r/min and 50% throttle opening, as the ignition energy increased, the peak values of average cylinder pressure and average temperature increased, and the combustion duration shortened, The advance of the combustion center of gravity increases the tendency of the engine to knock. Under the same operating conditions, as the ignition timing advances, the peak values of average pressure and average temperature in the cylinder increase, gradually approaching the top dead center, and the tendency of engine detonation increases more significantly.展开更多
The cavitation in axial piston pumps threatens the reliability and safety of the overall hydraulic system.Vibration signal can reflect the cavitation conditions in axial piston pumps and it has been combined with mach...The cavitation in axial piston pumps threatens the reliability and safety of the overall hydraulic system.Vibration signal can reflect the cavitation conditions in axial piston pumps and it has been combined with machine learning to detect the pump cavitation.However,the vibration signal usually contains noise in real working conditions,which raises concerns about accurate recognition of cavitation in noisy environment.This paper presents an intelligent method to recognise the cavitation in axial piston pumps in noisy environment.First,we train a convolutional neural network(CNN)using the spectrogram images transformed from raw vibration data under different cavitation conditions.Second,we employ the technique of gradient-weighted class activation mapping(Grad-CAM)to visualise class-discriminative regions in the spectrogram image.Finally,we propose a novel image processing method based on Grad-CAM heatmap to automatically remove entrained noise and enhance class features in the spectrogram image.The experimental results show that the proposed method greatly improves the diagnostic performance of the CNN model in noisy environments.The classification accuracy of cavitation conditions increases from 0.50 to 0.89 and from 0.80 to 0.92 at signal-to-noise ratios of 4 and 6 dB,respectively.展开更多
A magnetically filtered cathode vacuum arc deposition system was used to deposit Ti-doped diamond-like carbon coatings(Ti-DLC)on pin surfaces to improve the wear resistance of high-power density diesel engine piston p...A magnetically filtered cathode vacuum arc deposition system was used to deposit Ti-doped diamond-like carbon coatings(Ti-DLC)on pin surfaces to improve the wear resistance of high-power density diesel engine piston pins.The coating structure,composition,and morphology were characterised using field emission scanning electron microscopy(FE-SEM),X-ray photoelectron spectroscopy(XPS),Raman spectroscopy,and other techniques.Friction tests were carried out using a universal tribometer to study the tribological properties of pins with or without coatings under dry friction and oil lubrication.The surface morphology and cross-sectional morphology of the Ti-DLC coating show that the coating has a uniform crosssection and good surface properties.The XPS spectrum shows that the coating contains Ti-C,Ti-C*,sp2-C,sp3-C,and C-O/C=O.Raman spectroscopy shows that there is an amorphous carbon phase in the Ti-DLC coating.The friction test shows that the friction temperature increase of the pin with the Ti-DLC coating is lower than that without the coating,especially under dry-friction conditions.At the end of the test,the difierence in temperature increase is 16.7%.The friction coefficient when using high-viscosity lubricating oil with a coating is relatively lower than that without a coating,especially under low-speed and heavy-duty conditions.In the dryfriction state,the coated surface has better wear resistance than the uncoated surface,which primarily manifests as abrasive wear,and the surface without a coating mainly experiences adhesive wear.展开更多
Pneumatic down-the-hole (DTH) hammer has been extensively used in air drillings through hard and ultra-hard geological formations. Numerical modeling can offer close observation on the working behaviors by visualizing...Pneumatic down-the-hole (DTH) hammer has been extensively used in air drillings through hard and ultra-hard geological formations. Numerical modeling can offer close observation on the working behaviors by visualizing internal pressure status as well as provide reliable performance predictions for large-diameter DTH hammers to which conventional empirical and experimental approaches cannot be applied. In this study, CFD simulations coupled with dynamic meshing are utilized to simulate the air flow and piston movement inside the large-diameter DTH hammers. The numerical modeling scheme is verified against a theoretical model published in literature. Effects of structural parameters on hammer performance, including piston mass, piston upper-end diameter, piston groove diameter, and lengths of intake and exhaust stroke in both front and rear chambers, are analyzed in detail by virtue of sets of numerical simulations. The simulations suggest that changing the intake stroke of front chamber has a negligible influence on hammer performance while increasing the piston groove would lower all the four indicators of hammer performance, including impact energy, impact frequency, maximum stroke, and air consumption rate. Changing the other structural parameters demonstrates mixed effects on the performance indicators. Based on the numerical simulations, a large GQ-400 DTH hammer has been designed for reduced air consumption rate and tested in a field drilling practice. The air drilling test with the designed hammer provided a penetration rate 1.7 times faster than that of conventional mud drilling.展开更多
A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into correspon...A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into corresponding voltage signal by the thermo-couple first. Then after the V/F stage, the voltage signal is converted into the frequency signal to drive the infrared light-emitting diode to transmit infrared pulses. At the receiver end, a photosensitive audion receives the infrared pulses. After conversion, the voltage recorded by the receiver stands for the magnitude of temperature at the measuring point. Test results of the system indicate that the system is practical and the system can perform multipoint looping temperature measurements for the piston.展开更多
Vibrations or dither's are features of the PWM servo control system in their steady outputs. On the grounds of analyses and experiments of a PWM pneumatic servo control system, the paper puts forward four varietie...Vibrations or dither's are features of the PWM servo control system in their steady outputs. On the grounds of analyses and experiments of a PWM pneumatic servo control system, the paper puts forward four varieties of PWM modulation methods, and concludes on the relationship between dithers and the different methods, and then discusses the influence of friction to the dithers. Results from experiments regarding the dynamic and static responses on the given system support the theories presented.展开更多
Raising the rotational speed of an axial piston pump is useful for improving its power density;however,the churning losses of the piston increase significantly with increasing speed,and this reduces the performance an...Raising the rotational speed of an axial piston pump is useful for improving its power density;however,the churning losses of the piston increase significantly with increasing speed,and this reduces the performance and efficiency of the axial piston pump.Currently,there has been some research on the churning losses of pistons;however,it has rarely been analyzed from the perspective of the piston number.To improve the performance and efficiency of the axial piston pump,a computational fluid dynamics(CFD)simulation model of the churning loss was established,and the effect of piston number on the churning loss was studied in detail.The simulation analysis results revealed that the churning losses initially increased as the number of pistons increased;however,when the number of pistons increased from six to nine,the torque of the churning losses decreased because of the hydrodynamic shadowing effect.In addition,in the analysis of cavitation results,it was determined that the cavitation area of the axial piston pump was mainly concentrated around the piston,and the cavitation became increasingly severe as the speed increased.By comparing the simulation results with and without the cavitation model,it was observed that the cavitation phenomenon is beneficial for the reduction of churning losses.In this study,a piston churning loss test rig that can eliminate other friction losses was established to verify the accuracy of the simulation results.A comparative analysis indicated that the simulation results were consistent with the actual situation.In addition,this study also conducted a simulation study on seven and nine piston pumps with the same displacement.The simulation results revealed that churning losses of the seven pistons were generally greater than those of the nine pistons under the same displacement.In addition,regarding the same piston number and displacement,reducing the pitch circle radius of piston bores is effective in reducing the churning loss.This research analyzes the effect of piston number on the churning loss,which has certain guiding significance for the structural design and model selection of axial piston pumps.展开更多
The limit working parameters and service life of axial piston pump are determined by the carrying ability and lubrication characteristic of its key friction pairs. Therefore, the design and optimization of the key fri...The limit working parameters and service life of axial piston pump are determined by the carrying ability and lubrication characteristic of its key friction pairs. Therefore, the design and optimization of the key friction pairs are always a key and difficult problem in the research on axial piston pump. In the traditional research on piston/cylinder pair, the assembly relationship of piston and cylinder bore is simplified into ideal cylindrical pair, which can not be used to analyze the influences of radial micro-motion of piston on the distribution characteristics of oil-film thickness and pressure in details. In this paper, based on the lubrication theory of the oil film, a numerical simulation model is built, taking the influences of roughness, elastic deformation of piston and pressure-viscosity effect into consideration. With the simulation model, the dynamic characteristics of the radial micro-motion and pressure distribution are analyzed, and the relationships between radial micro-motion and carrying ability, lubrication condition, and abrasion are discussed. Furthermore, a model pump for pressure distribution measurement of oil film between piston and cylinder bore is designed. The comparison of simulation and experimental results of pressure distribution shows that the simulation model has high accuracy. The experiment and simulation results demonstrate that the pressure distribution has peak values that are much higher than the boundary pressure in the piston chamber due to the radial micro-motion, and the abrasion of piston takes place mainly on the hand close to piston ball. In addition, improvement of manufacturing roundness and straightness of piston and cylinder bore is helpful to improve the carrying ability of piston/cylinder pair. The proposed research provides references for designing piston/cylinder pair, and helps to prolong the service life of axial piston pump.展开更多
文摘The adaptive FEM analysis of the temperature field of the piston in one diesel engine is given by using the ANSYS software. By making full use of the post results provided by the software, the posteriori error estimation and adaptive accuracy meshing algorithm is developed. So the blindness of the mesh design through experiences can be avoided, and the accuracy requirement is adapted to the relative temperature gradient distribution across the entire domain. Therefore the meshes and solutions can be obtained at the same time. Based on the temperature field analysis, the thermal stress and deformation fields are calculated as well. The results show that the stress concentrates on the edge of the piston pin boss and the inside surface of the first ring groove, and the deformation of the head of the piston is greatest. But the difference between the long and short axes of the bottom cross section is greatest.
基金the National Natural Science Foundation of China(No.52265043)Science and Technology Plan,Guizhou Province,China(No.ZK2021(267))+2 种基金Technology Achievements Application and Industrialization Project,Guizhou Province,China(No.2021(067))Cultivation Project of Guizhou University,China(No.2019(23))Lastly,we thank the Shanghai Synchrotron Radiation Facility(SSRF)for providing the synchrotron radiation beamtime.
文摘Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.
基金The project was commissioned and supported by the funding of the Federal Office of Environment(No.1337000438).
文摘In this article,we consider the numerical prediction of the noise emission from a wheelset in laboratory conditions.We focus on the fluid-structure interaction leading to sound emission in the fluid domain by analyzing three different methods to account for acoustic sources.These are a discretized baffled piston using the discrete calculation method(DCM),a closed cylindrical volume using the boundary element method(BEM)and radiating elastic disks in a cubic enclosure solved with the finite element method(FEM).We provide the validation of the baffled piston and the BEM using measurements of the noise emission of a railway wheel by considering ground reflections in the numerical models.Selected space-resolved waveforms are compared with experimental results as well as with a fluid-structure interaction finite element model.The computational advantage of a discretized disk mounted on a baffle and BEM compared to FEM is highlighted,and the baffled pistons limitations caused by a lack of edge radiation effects are investigated.
文摘Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-mented using the AVL FIRE software.The effects of the angle of nozzle inclination on fuel evaporation,mixture distribution,and combustion in the engine cylinder have been systematically studied at 5500 r/min and consider-ing full load cruise conditions.According to the results,as the angle of nozzle inclination increases,the maximum combustion explosion pressure in the cylinderfirst increases and then it decreases.When the angle of nozzle incli-nation is less than 45°,the quality of the mixture in the cylinder and the combustion performance can be improved by increasing the angle.When the angle of nozzle inclination is greater than 45°,however,the mixture unevenness increases slightly with the angle,leading to a deterioration of the combustion performances.When the angle of nozzle inclination is between 35°and 55°,the overall combustion performance of the engine is rela-tively good.When the angle of nozzle inclination is 45°,the combustion chamber’s geometry and the cylinder’s airflow are well matched with the fuel spray,and the mixture quality is the best.Compared with 25°,the peak heat release rate increases by 20%,and the maximum combustion burst pressure increases by 5.5%.
文摘The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders.
文摘Manufacturing machines converting energy to mechanical work at the molecular level is a vital pathway to ex- plore the microscopic world. A kind of operable molecular engines, composed offl-cyclodextrin (fl-CD), aryl, al- kene and amide moiety was investigated using molecular dynamics simulations combined with free-energy calcula- tions. To understand how the integrated alkene double bond controls the work performed on the engines, two alkene isomers of the prototype were considered as two molecular engines. The free-energy profiles delineating the binding process of the amide (Z)- and (E)-isomers for each alkene isomer with 1-adamantanol indicate that for the alkene (E)-isomer, the apparent work performed on the amide bond is 1.6 kcal/mol, while the alkene (Z)-isomer is incapa- ble to perform work. Direct switch on/off of engines caused by the isomerization of the alkene bond was, therefore, witnessed, in line with experimental measurements. Decomposition of the free-energy profile into different compo- nents and structural analyses suggest that the isomerization of the alkene bond controls the position of the aryl unit relative to the cavity of the CD, resulting in the difference among the free-energy profiles and the stark contrast of the work performed on engines.
文摘A cylinder combustion simulation model was established for a two-stroke aviation piston engine used in a small unmanned aerial vehicle. The influence of different ignition system parameters on the combustion process of aviation kerosene was studied using this model. The research results showed that under the working conditions of 5500 r/min and 50% throttle opening, as the ignition energy increased, the peak values of average cylinder pressure and average temperature increased, and the combustion duration shortened, The advance of the combustion center of gravity increases the tendency of the engine to knock. Under the same operating conditions, as the ignition timing advances, the peak values of average pressure and average temperature in the cylinder increase, gradually approaching the top dead center, and the tendency of engine detonation increases more significantly.
基金National Key R&D Program of China,Grant/Award Number:2018YFB1702503Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems,Grant/Award Number:GZKF-202108+2 种基金Open Foundation of the Guangdong Provincial Key Laboratory of Electronic Information Products Reliability TechnologyChina National Postdoctoral Program for Innovative Talents,Grant/Award Number:BX20200210China Postdoctoral Science Foundation,Grant/Award Number:2019M660086。
文摘The cavitation in axial piston pumps threatens the reliability and safety of the overall hydraulic system.Vibration signal can reflect the cavitation conditions in axial piston pumps and it has been combined with machine learning to detect the pump cavitation.However,the vibration signal usually contains noise in real working conditions,which raises concerns about accurate recognition of cavitation in noisy environment.This paper presents an intelligent method to recognise the cavitation in axial piston pumps in noisy environment.First,we train a convolutional neural network(CNN)using the spectrogram images transformed from raw vibration data under different cavitation conditions.Second,we employ the technique of gradient-weighted class activation mapping(Grad-CAM)to visualise class-discriminative regions in the spectrogram image.Finally,we propose a novel image processing method based on Grad-CAM heatmap to automatically remove entrained noise and enhance class features in the spectrogram image.The experimental results show that the proposed method greatly improves the diagnostic performance of the CNN model in noisy environments.The classification accuracy of cavitation conditions increases from 0.50 to 0.89 and from 0.80 to 0.92 at signal-to-noise ratios of 4 and 6 dB,respectively.
基金Funded by the Tribology Science Fund of State Key Laboratory of Triboloy(No.SKLTKF20B08),Tsinghua University,China。
文摘A magnetically filtered cathode vacuum arc deposition system was used to deposit Ti-doped diamond-like carbon coatings(Ti-DLC)on pin surfaces to improve the wear resistance of high-power density diesel engine piston pins.The coating structure,composition,and morphology were characterised using field emission scanning electron microscopy(FE-SEM),X-ray photoelectron spectroscopy(XPS),Raman spectroscopy,and other techniques.Friction tests were carried out using a universal tribometer to study the tribological properties of pins with or without coatings under dry friction and oil lubrication.The surface morphology and cross-sectional morphology of the Ti-DLC coating show that the coating has a uniform crosssection and good surface properties.The XPS spectrum shows that the coating contains Ti-C,Ti-C*,sp2-C,sp3-C,and C-O/C=O.Raman spectroscopy shows that there is an amorphous carbon phase in the Ti-DLC coating.The friction test shows that the friction temperature increase of the pin with the Ti-DLC coating is lower than that without the coating,especially under dry-friction conditions.At the end of the test,the difierence in temperature increase is 16.7%.The friction coefficient when using high-viscosity lubricating oil with a coating is relatively lower than that without a coating,especially under low-speed and heavy-duty conditions.In the dryfriction state,the coated surface has better wear resistance than the uncoated surface,which primarily manifests as abrasive wear,and the surface without a coating mainly experiences adhesive wear.
基金This work was supported by the Natural Science Foundation of Jilin Province(YDZj202101ZYTS143)National Key Research and Development Project of China(project No.2018YFC1505303).
文摘Pneumatic down-the-hole (DTH) hammer has been extensively used in air drillings through hard and ultra-hard geological formations. Numerical modeling can offer close observation on the working behaviors by visualizing internal pressure status as well as provide reliable performance predictions for large-diameter DTH hammers to which conventional empirical and experimental approaches cannot be applied. In this study, CFD simulations coupled with dynamic meshing are utilized to simulate the air flow and piston movement inside the large-diameter DTH hammers. The numerical modeling scheme is verified against a theoretical model published in literature. Effects of structural parameters on hammer performance, including piston mass, piston upper-end diameter, piston groove diameter, and lengths of intake and exhaust stroke in both front and rear chambers, are analyzed in detail by virtue of sets of numerical simulations. The simulations suggest that changing the intake stroke of front chamber has a negligible influence on hammer performance while increasing the piston groove would lower all the four indicators of hammer performance, including impact energy, impact frequency, maximum stroke, and air consumption rate. Changing the other structural parameters demonstrates mixed effects on the performance indicators. Based on the numerical simulations, a large GQ-400 DTH hammer has been designed for reduced air consumption rate and tested in a field drilling practice. The air drilling test with the designed hammer provided a penetration rate 1.7 times faster than that of conventional mud drilling.
文摘A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into corresponding voltage signal by the thermo-couple first. Then after the V/F stage, the voltage signal is converted into the frequency signal to drive the infrared light-emitting diode to transmit infrared pulses. At the receiver end, a photosensitive audion receives the infrared pulses. After conversion, the voltage recorded by the receiver stands for the magnitude of temperature at the measuring point. Test results of the system indicate that the system is practical and the system can perform multipoint looping temperature measurements for the piston.
文摘Vibrations or dither's are features of the PWM servo control system in their steady outputs. On the grounds of analyses and experiments of a PWM pneumatic servo control system, the paper puts forward four varieties of PWM modulation methods, and concludes on the relationship between dithers and the different methods, and then discusses the influence of friction to the dithers. Results from experiments regarding the dynamic and static responses on the given system support the theories presented.
基金National Natural Science Foundation of China(Grant No.52005429)Open Foundation of State Key Laboratory of Fluid Power and Mechatronic Systems of China(Grant No.GZKF-201911)National Key Research and Development Program of China(Grant No.2018YFB2000703).
文摘Raising the rotational speed of an axial piston pump is useful for improving its power density;however,the churning losses of the piston increase significantly with increasing speed,and this reduces the performance and efficiency of the axial piston pump.Currently,there has been some research on the churning losses of pistons;however,it has rarely been analyzed from the perspective of the piston number.To improve the performance and efficiency of the axial piston pump,a computational fluid dynamics(CFD)simulation model of the churning loss was established,and the effect of piston number on the churning loss was studied in detail.The simulation analysis results revealed that the churning losses initially increased as the number of pistons increased;however,when the number of pistons increased from six to nine,the torque of the churning losses decreased because of the hydrodynamic shadowing effect.In addition,in the analysis of cavitation results,it was determined that the cavitation area of the axial piston pump was mainly concentrated around the piston,and the cavitation became increasingly severe as the speed increased.By comparing the simulation results with and without the cavitation model,it was observed that the cavitation phenomenon is beneficial for the reduction of churning losses.In this study,a piston churning loss test rig that can eliminate other friction losses was established to verify the accuracy of the simulation results.A comparative analysis indicated that the simulation results were consistent with the actual situation.In addition,this study also conducted a simulation study on seven and nine piston pumps with the same displacement.The simulation results revealed that churning losses of the seven pistons were generally greater than those of the nine pistons under the same displacement.In addition,regarding the same piston number and displacement,reducing the pitch circle radius of piston bores is effective in reducing the churning loss.This research analyzes the effect of piston number on the churning loss,which has certain guiding significance for the structural design and model selection of axial piston pumps.
基金supported by National Natural Science Foundation of China(Grant No. 51075360)Doctoral Foundation of Ministry of Education of China(Grant No. 20090101110041)National Key Technology R&D Program of the Twelfth Five-year Plan of China(Grant No. 2011BAF09B03)
文摘The limit working parameters and service life of axial piston pump are determined by the carrying ability and lubrication characteristic of its key friction pairs. Therefore, the design and optimization of the key friction pairs are always a key and difficult problem in the research on axial piston pump. In the traditional research on piston/cylinder pair, the assembly relationship of piston and cylinder bore is simplified into ideal cylindrical pair, which can not be used to analyze the influences of radial micro-motion of piston on the distribution characteristics of oil-film thickness and pressure in details. In this paper, based on the lubrication theory of the oil film, a numerical simulation model is built, taking the influences of roughness, elastic deformation of piston and pressure-viscosity effect into consideration. With the simulation model, the dynamic characteristics of the radial micro-motion and pressure distribution are analyzed, and the relationships between radial micro-motion and carrying ability, lubrication condition, and abrasion are discussed. Furthermore, a model pump for pressure distribution measurement of oil film between piston and cylinder bore is designed. The comparison of simulation and experimental results of pressure distribution shows that the simulation model has high accuracy. The experiment and simulation results demonstrate that the pressure distribution has peak values that are much higher than the boundary pressure in the piston chamber due to the radial micro-motion, and the abrasion of piston takes place mainly on the hand close to piston ball. In addition, improvement of manufacturing roundness and straightness of piston and cylinder bore is helpful to improve the carrying ability of piston/cylinder pair. The proposed research provides references for designing piston/cylinder pair, and helps to prolong the service life of axial piston pump.